SolarFM/plugins/git_clone/pexpect/ptyprocess/ptyprocess.py

856 lines
31 KiB
Python
Raw Permalink Normal View History

import codecs
import errno
import fcntl
import io
import os
import pty
import resource
import signal
import struct
import sys
import termios
import time
try:
import builtins # Python 3
except ImportError:
import __builtin__ as builtins # Python 2
# Constants
from pty import (STDIN_FILENO, CHILD)
from .util import which, PtyProcessError
_platform = sys.platform.lower()
# Solaris uses internal __fork_pty(). All others use pty.fork().
_is_solaris = (
_platform.startswith('solaris') or
_platform.startswith('sunos'))
if _is_solaris:
use_native_pty_fork = False
from . import _fork_pty
else:
use_native_pty_fork = True
PY3 = sys.version_info[0] >= 3
if PY3:
def _byte(i):
return bytes([i])
else:
def _byte(i):
return chr(i)
class FileNotFoundError(OSError): pass
class TimeoutError(OSError): pass
_EOF, _INTR = None, None
def _make_eof_intr():
"""Set constants _EOF and _INTR.
This avoids doing potentially costly operations on module load.
"""
global _EOF, _INTR
if (_EOF is not None) and (_INTR is not None):
return
# inherit EOF and INTR definitions from controlling process.
try:
from termios import VEOF, VINTR
fd = None
for name in 'stdin', 'stdout':
stream = getattr(sys, '__%s__' % name, None)
if stream is None or not hasattr(stream, 'fileno'):
continue
try:
fd = stream.fileno()
except ValueError:
continue
if fd is None:
# no fd, raise ValueError to fallback on CEOF, CINTR
raise ValueError("No stream has a fileno")
intr = ord(termios.tcgetattr(fd)[6][VINTR])
eof = ord(termios.tcgetattr(fd)[6][VEOF])
except (ImportError, OSError, IOError, ValueError, termios.error):
# unless the controlling process is also not a terminal,
# such as cron(1), or when stdin and stdout are both closed.
# Fall-back to using CEOF and CINTR. There
try:
from termios import CEOF, CINTR
(intr, eof) = (CINTR, CEOF)
except ImportError:
# ^C, ^D
(intr, eof) = (3, 4)
_INTR = _byte(intr)
_EOF = _byte(eof)
# setecho and setwinsize are pulled out here because on some platforms, we need
# to do this from the child before we exec()
def _setecho(fd, state):
errmsg = 'setecho() may not be called on this platform (it may still be possible to enable/disable echo when spawning the child process)'
try:
attr = termios.tcgetattr(fd)
except termios.error as err:
if err.args[0] == errno.EINVAL:
raise IOError(err.args[0], '%s: %s.' % (err.args[1], errmsg))
raise
if state:
attr[3] = attr[3] | termios.ECHO
else:
attr[3] = attr[3] & ~termios.ECHO
try:
# I tried TCSADRAIN and TCSAFLUSH, but these were inconsistent and
# blocked on some platforms. TCSADRAIN would probably be ideal.
termios.tcsetattr(fd, termios.TCSANOW, attr)
except IOError as err:
if err.args[0] == errno.EINVAL:
raise IOError(err.args[0], '%s: %s.' % (err.args[1], errmsg))
raise
def _setwinsize(fd, rows, cols):
# Some very old platforms have a bug that causes the value for
# termios.TIOCSWINSZ to be truncated. There was a hack here to work
# around this, but it caused problems with newer platforms so has been
# removed. For details see https://github.com/pexpect/pexpect/issues/39
TIOCSWINSZ = getattr(termios, 'TIOCSWINSZ', -2146929561)
# Note, assume ws_xpixel and ws_ypixel are zero.
s = struct.pack('HHHH', rows, cols, 0, 0)
fcntl.ioctl(fd, TIOCSWINSZ, s)
class PtyProcess(object):
'''This class represents a process running in a pseudoterminal.
The main constructor is the :meth:`spawn` classmethod.
'''
string_type = bytes
if PY3:
linesep = os.linesep.encode('ascii')
crlf = '\r\n'.encode('ascii')
@staticmethod
def write_to_stdout(b):
try:
return sys.stdout.buffer.write(b)
except AttributeError:
# If stdout has been replaced, it may not have .buffer
return sys.stdout.write(b.decode('ascii', 'replace'))
else:
linesep = os.linesep
crlf = '\r\n'
write_to_stdout = sys.stdout.write
encoding = None
argv = None
env = None
launch_dir = None
def __init__(self, pid, fd):
_make_eof_intr() # Ensure _EOF and _INTR are calculated
self.pid = pid
self.fd = fd
readf = io.open(fd, 'rb', buffering=0)
writef = io.open(fd, 'wb', buffering=0, closefd=False)
self.fileobj = io.BufferedRWPair(readf, writef)
self.terminated = False
self.closed = False
self.exitstatus = None
self.signalstatus = None
# status returned by os.waitpid
self.status = None
self.flag_eof = False
# Used by close() to give kernel time to update process status.
# Time in seconds.
self.delayafterclose = 0.1
# Used by terminate() to give kernel time to update process status.
# Time in seconds.
self.delayafterterminate = 0.1
@classmethod
def spawn(
cls, argv, cwd=None, env=None, echo=True, preexec_fn=None,
dimensions=(24, 80), pass_fds=()):
'''Start the given command in a child process in a pseudo terminal.
This does all the fork/exec type of stuff for a pty, and returns an
instance of PtyProcess.
If preexec_fn is supplied, it will be called with no arguments in the
child process before exec-ing the specified command.
It may, for instance, set signal handlers to SIG_DFL or SIG_IGN.
Dimensions of the psuedoterminal used for the subprocess can be
specified as a tuple (rows, cols), or the default (24, 80) will be used.
By default, all file descriptors except 0, 1 and 2 are closed. This
behavior can be overridden with pass_fds, a list of file descriptors to
keep open between the parent and the child.
'''
# Note that it is difficult for this method to fail.
# You cannot detect if the child process cannot start.
# So the only way you can tell if the child process started
# or not is to try to read from the file descriptor. If you get
# EOF immediately then it means that the child is already dead.
# That may not necessarily be bad because you may have spawned a child
# that performs some task; creates no stdout output; and then dies.
if not isinstance(argv, (list, tuple)):
raise TypeError("Expected a list or tuple for argv, got %r" % argv)
# Shallow copy of argv so we can modify it
argv = argv[:]
command = argv[0]
command_with_path = which(command)
if command_with_path is None:
raise FileNotFoundError('The command was not found or was not ' +
'executable: %s.' % command)
command = command_with_path
argv[0] = command
# [issue #119] To prevent the case where exec fails and the user is
# stuck interacting with a python child process instead of whatever
# was expected, we implement the solution from
# http://stackoverflow.com/a/3703179 to pass the exception to the
# parent process
# [issue #119] 1. Before forking, open a pipe in the parent process.
exec_err_pipe_read, exec_err_pipe_write = os.pipe()
if use_native_pty_fork:
pid, fd = pty.fork()
else:
# Use internal fork_pty, for Solaris
pid, fd = _fork_pty.fork_pty()
# Some platforms must call setwinsize() and setecho() from the
# child process, and others from the master process. We do both,
# allowing IOError for either.
if pid == CHILD:
# set window size
try:
_setwinsize(STDIN_FILENO, *dimensions)
except IOError as err:
if err.args[0] not in (errno.EINVAL, errno.ENOTTY):
raise
# disable echo if spawn argument echo was unset
if not echo:
try:
_setecho(STDIN_FILENO, False)
except (IOError, termios.error) as err:
if err.args[0] not in (errno.EINVAL, errno.ENOTTY):
raise
# [issue #119] 3. The child closes the reading end and sets the
# close-on-exec flag for the writing end.
os.close(exec_err_pipe_read)
fcntl.fcntl(exec_err_pipe_write, fcntl.F_SETFD, fcntl.FD_CLOEXEC)
# Do not allow child to inherit open file descriptors from parent,
# with the exception of the exec_err_pipe_write of the pipe
# and pass_fds.
# Impose ceiling on max_fd: AIX bugfix for users with unlimited
# nofiles where resource.RLIMIT_NOFILE is 2^63-1 and os.closerange()
# occasionally raises out of range error
max_fd = min(1048576, resource.getrlimit(resource.RLIMIT_NOFILE)[0])
spass_fds = sorted(set(pass_fds) | {exec_err_pipe_write})
for pair in zip([2] + spass_fds, spass_fds + [max_fd]):
os.closerange(pair[0]+1, pair[1])
if cwd is not None:
os.chdir(cwd)
if preexec_fn is not None:
try:
preexec_fn()
except Exception as e:
ename = type(e).__name__
tosend = '{}:0:{}'.format(ename, str(e))
if PY3:
tosend = tosend.encode('utf-8')
os.write(exec_err_pipe_write, tosend)
os.close(exec_err_pipe_write)
os._exit(1)
try:
if env is None:
os.execv(command, argv)
else:
os.execvpe(command, argv, env)
except OSError as err:
# [issue #119] 5. If exec fails, the child writes the error
# code back to the parent using the pipe, then exits.
tosend = 'OSError:{}:{}'.format(err.errno, str(err))
if PY3:
tosend = tosend.encode('utf-8')
os.write(exec_err_pipe_write, tosend)
os.close(exec_err_pipe_write)
os._exit(os.EX_OSERR)
# Parent
inst = cls(pid, fd)
# Set some informational attributes
inst.argv = argv
if env is not None:
inst.env = env
if cwd is not None:
inst.launch_dir = cwd
# [issue #119] 2. After forking, the parent closes the writing end
# of the pipe and reads from the reading end.
os.close(exec_err_pipe_write)
exec_err_data = os.read(exec_err_pipe_read, 4096)
os.close(exec_err_pipe_read)
# [issue #119] 6. The parent reads eof (a zero-length read) if the
# child successfully performed exec, since close-on-exec made
# successful exec close the writing end of the pipe. Or, if exec
# failed, the parent reads the error code and can proceed
# accordingly. Either way, the parent blocks until the child calls
# exec.
if len(exec_err_data) != 0:
try:
errclass, errno_s, errmsg = exec_err_data.split(b':', 2)
exctype = getattr(builtins, errclass.decode('ascii'), Exception)
exception = exctype(errmsg.decode('utf-8', 'replace'))
if exctype is OSError:
exception.errno = int(errno_s)
except:
raise Exception('Subprocess failed, got bad error data: %r'
% exec_err_data)
else:
raise exception
try:
inst.setwinsize(*dimensions)
except IOError as err:
if err.args[0] not in (errno.EINVAL, errno.ENOTTY, errno.ENXIO):
raise
return inst
def __repr__(self):
clsname = type(self).__name__
if self.argv is not None:
args = [repr(self.argv)]
if self.env is not None:
args.append("env=%r" % self.env)
if self.launch_dir is not None:
args.append("cwd=%r" % self.launch_dir)
return "{}.spawn({})".format(clsname, ", ".join(args))
else:
return "{}(pid={}, fd={})".format(clsname, self.pid, self.fd)
@staticmethod
def _coerce_send_string(s):
if not isinstance(s, bytes):
return s.encode('utf-8')
return s
@staticmethod
def _coerce_read_string(s):
return s
def __del__(self):
'''This makes sure that no system resources are left open. Python only
garbage collects Python objects. OS file descriptors are not Python
objects, so they must be handled explicitly. If the child file
descriptor was opened outside of this class (passed to the constructor)
then this does not close it. '''
if not self.closed:
# It is possible for __del__ methods to execute during the
# teardown of the Python VM itself. Thus self.close() may
# trigger an exception because os.close may be None.
try:
self.close()
# which exception, shouldn't we catch explicitly .. ?
except:
pass
def fileno(self):
'''This returns the file descriptor of the pty for the child.
'''
return self.fd
def close(self, force=True):
'''This closes the connection with the child application. Note that
calling close() more than once is valid. This emulates standard Python
behavior with files. Set force to True if you want to make sure that
the child is terminated (SIGKILL is sent if the child ignores SIGHUP
and SIGINT). '''
if not self.closed:
self.flush()
self.fileobj.close() # Closes the file descriptor
# Give kernel time to update process status.
time.sleep(self.delayafterclose)
if self.isalive():
if not self.terminate(force):
raise PtyProcessError('Could not terminate the child.')
self.fd = -1
self.closed = True
#self.pid = None
def flush(self):
'''This does nothing. It is here to support the interface for a
File-like object. '''
pass
def isatty(self):
'''This returns True if the file descriptor is open and connected to a
tty(-like) device, else False.
On SVR4-style platforms implementing streams, such as SunOS and HP-UX,
the child pty may not appear as a terminal device. This means
methods such as setecho(), setwinsize(), getwinsize() may raise an
IOError. '''
return os.isatty(self.fd)
def waitnoecho(self, timeout=None):
'''Wait until the terminal ECHO flag is set False.
This returns True if the echo mode is off, or False if echo was not
disabled before the timeout. This can be used to detect when the
child is waiting for a password. Usually a child application will turn
off echo mode when it is waiting for the user to enter a password. For
example, instead of expecting the "password:" prompt you can wait for
the child to turn echo off::
p = pexpect.spawn('ssh user@example.com')
p.waitnoecho()
p.sendline(mypassword)
If ``timeout=None`` then this method to block until ECHO flag is False.
'''
if timeout is not None:
end_time = time.time() + timeout
while True:
if not self.getecho():
return True
if timeout < 0 and timeout is not None:
return False
if timeout is not None:
timeout = end_time - time.time()
time.sleep(0.1)
def getecho(self):
'''Returns True if terminal echo is on, or False if echo is off.
Child applications that are expecting you to enter a password often
disable echo. See also :meth:`waitnoecho`.
Not supported on platforms where ``isatty()`` returns False.
'''
try:
attr = termios.tcgetattr(self.fd)
except termios.error as err:
errmsg = 'getecho() may not be called on this platform'
if err.args[0] == errno.EINVAL:
raise IOError(err.args[0], '%s: %s.' % (err.args[1], errmsg))
raise
self.echo = bool(attr[3] & termios.ECHO)
return self.echo
def setecho(self, state):
'''Enable or disable terminal echo.
Anything the child sent before the echo will be lost, so you should be
sure that your input buffer is empty before you call setecho().
For example, the following will work as expected::
p = pexpect.spawn('cat') # Echo is on by default.
p.sendline('1234') # We expect see this twice from the child...
p.expect(['1234']) # ... once from the tty echo...
p.expect(['1234']) # ... and again from cat itself.
p.setecho(False) # Turn off tty echo
p.sendline('abcd') # We will set this only once (echoed by cat).
p.sendline('wxyz') # We will set this only once (echoed by cat)
p.expect(['abcd'])
p.expect(['wxyz'])
The following WILL NOT WORK because the lines sent before the setecho
will be lost::
p = pexpect.spawn('cat')
p.sendline('1234')
p.setecho(False) # Turn off tty echo
p.sendline('abcd') # We will set this only once (echoed by cat).
p.sendline('wxyz') # We will set this only once (echoed by cat)
p.expect(['1234'])
p.expect(['1234'])
p.expect(['abcd'])
p.expect(['wxyz'])
Not supported on platforms where ``isatty()`` returns False.
'''
_setecho(self.fd, state)
self.echo = state
def read(self, size=1024):
"""Read and return at most ``size`` bytes from the pty.
Can block if there is nothing to read. Raises :exc:`EOFError` if the
terminal was closed.
Unlike Pexpect's ``read_nonblocking`` method, this doesn't try to deal
with the vagaries of EOF on platforms that do strange things, like IRIX
or older Solaris systems. It handles the errno=EIO pattern used on
Linux, and the empty-string return used on BSD platforms and (seemingly)
on recent Solaris.
"""
try:
s = self.fileobj.read1(size)
except (OSError, IOError) as err:
if err.args[0] == errno.EIO:
# Linux-style EOF
self.flag_eof = True
raise EOFError('End Of File (EOF). Exception style platform.')
raise
if s == b'':
# BSD-style EOF (also appears to work on recent Solaris (OpenIndiana))
self.flag_eof = True
raise EOFError('End Of File (EOF). Empty string style platform.')
return s
def readline(self):
"""Read one line from the pseudoterminal, and return it as unicode.
Can block if there is nothing to read. Raises :exc:`EOFError` if the
terminal was closed.
"""
try:
s = self.fileobj.readline()
except (OSError, IOError) as err:
if err.args[0] == errno.EIO:
# Linux-style EOF
self.flag_eof = True
raise EOFError('End Of File (EOF). Exception style platform.')
raise
if s == b'':
# BSD-style EOF (also appears to work on recent Solaris (OpenIndiana))
self.flag_eof = True
raise EOFError('End Of File (EOF). Empty string style platform.')
return s
def _writeb(self, b, flush=True):
n = self.fileobj.write(b)
if flush:
self.fileobj.flush()
return n
def write(self, s, flush=True):
"""Write bytes to the pseudoterminal.
Returns the number of bytes written.
"""
return self._writeb(s, flush=flush)
def sendcontrol(self, char):
'''Helper method for sending control characters to the terminal.
For example, to send Ctrl-G (ASCII 7, bell, ``'\\a'``)::
child.sendcontrol('g')
See also, :meth:`sendintr` and :meth:`sendeof`.
'''
char = char.lower()
a = ord(char)
if 97 <= a <= 122:
a = a - ord('a') + 1
byte = _byte(a)
return self._writeb(byte), byte
d = {'@': 0, '`': 0,
'[': 27, '{': 27,
'\\': 28, '|': 28,
']': 29, '}': 29,
'^': 30, '~': 30,
'_': 31,
'?': 127}
if char not in d:
return 0, b''
byte = _byte(d[char])
return self._writeb(byte), byte
def sendeof(self):
'''Sends an EOF (typically Ctrl-D) through the terminal.
This sends a character which causes
the pending parent output buffer to be sent to the waiting child
program without waiting for end-of-line. If it is the first character
of the line, the read() in the user program returns 0, which signifies
end-of-file. This means to work as expected a sendeof() has to be
called at the beginning of a line. This method does not send a newline.
It is the responsibility of the caller to ensure the eof is sent at the
beginning of a line.
'''
return self._writeb(_EOF), _EOF
def sendintr(self):
'''Send an interrupt character (typically Ctrl-C) through the terminal.
This will normally trigger the kernel to send SIGINT to the current
foreground process group. Processes can turn off this translation, in
which case they can read the raw data sent, e.g. ``b'\\x03'`` for Ctrl-C.
See also the :meth:`kill` method, which sends a signal directly to the
immediate child process in the terminal (which is not necessarily the
foreground process).
'''
return self._writeb(_INTR), _INTR
def eof(self):
'''This returns True if the EOF exception was ever raised.
'''
return self.flag_eof
def terminate(self, force=False):
'''This forces a child process to terminate. It starts nicely with
SIGHUP and SIGINT. If "force" is True then moves onto SIGKILL. This
returns True if the child was terminated. This returns False if the
child could not be terminated. '''
if not self.isalive():
return True
try:
self.kill(signal.SIGHUP)
time.sleep(self.delayafterterminate)
if not self.isalive():
return True
self.kill(signal.SIGCONT)
time.sleep(self.delayafterterminate)
if not self.isalive():
return True
self.kill(signal.SIGINT)
time.sleep(self.delayafterterminate)
if not self.isalive():
return True
if force:
self.kill(signal.SIGKILL)
time.sleep(self.delayafterterminate)
if not self.isalive():
return True
else:
return False
return False
except OSError:
# I think there are kernel timing issues that sometimes cause
# this to happen. I think isalive() reports True, but the
# process is dead to the kernel.
# Make one last attempt to see if the kernel is up to date.
time.sleep(self.delayafterterminate)
if not self.isalive():
return True
else:
return False
def wait(self):
'''This waits until the child exits. This is a blocking call. This will
not read any data from the child, so this will block forever if the
child has unread output and has terminated. In other words, the child
may have printed output then called exit(), but, the child is
technically still alive until its output is read by the parent. '''
if self.isalive():
pid, status = os.waitpid(self.pid, 0)
else:
return self.exitstatus
self.exitstatus = os.WEXITSTATUS(status)
if os.WIFEXITED(status):
self.status = status
self.exitstatus = os.WEXITSTATUS(status)
self.signalstatus = None
self.terminated = True
elif os.WIFSIGNALED(status):
self.status = status
self.exitstatus = None
self.signalstatus = os.WTERMSIG(status)
self.terminated = True
elif os.WIFSTOPPED(status): # pragma: no cover
# You can't call wait() on a child process in the stopped state.
raise PtyProcessError('Called wait() on a stopped child ' +
'process. This is not supported. Is some other ' +
'process attempting job control with our child pid?')
return self.exitstatus
def isalive(self):
'''This tests if the child process is running or not. This is
non-blocking. If the child was terminated then this will read the
exitstatus or signalstatus of the child. This returns True if the child
process appears to be running or False if not. It can take literally
SECONDS for Solaris to return the right status. '''
if self.terminated:
return False
if self.flag_eof:
# This is for Linux, which requires the blocking form
# of waitpid to get the status of a defunct process.
# This is super-lame. The flag_eof would have been set
# in read_nonblocking(), so this should be safe.
waitpid_options = 0
else:
waitpid_options = os.WNOHANG
try:
pid, status = os.waitpid(self.pid, waitpid_options)
except OSError as e:
# No child processes
if e.errno == errno.ECHILD:
raise PtyProcessError('isalive() encountered condition ' +
'where "terminated" is 0, but there was no child ' +
'process. Did someone else call waitpid() ' +
'on our process?')
else:
raise
# I have to do this twice for Solaris.
# I can't even believe that I figured this out...
# If waitpid() returns 0 it means that no child process
# wishes to report, and the value of status is undefined.
if pid == 0:
try:
### os.WNOHANG) # Solaris!
pid, status = os.waitpid(self.pid, waitpid_options)
except OSError as e: # pragma: no cover
# This should never happen...
if e.errno == errno.ECHILD:
raise PtyProcessError('isalive() encountered condition ' +
'that should never happen. There was no child ' +
'process. Did someone else call waitpid() ' +
'on our process?')
else:
raise
# If pid is still 0 after two calls to waitpid() then the process
# really is alive. This seems to work on all platforms, except for
# Irix which seems to require a blocking call on waitpid or select,
# so I let read_nonblocking take care of this situation
# (unfortunately, this requires waiting through the timeout).
if pid == 0:
return True
if pid == 0:
return True
if os.WIFEXITED(status):
self.status = status
self.exitstatus = os.WEXITSTATUS(status)
self.signalstatus = None
self.terminated = True
elif os.WIFSIGNALED(status):
self.status = status
self.exitstatus = None
self.signalstatus = os.WTERMSIG(status)
self.terminated = True
elif os.WIFSTOPPED(status):
raise PtyProcessError('isalive() encountered condition ' +
'where child process is stopped. This is not ' +
'supported. Is some other process attempting ' +
'job control with our child pid?')
return False
def kill(self, sig):
"""Send the given signal to the child application.
In keeping with UNIX tradition it has a misleading name. It does not
necessarily kill the child unless you send the right signal. See the
:mod:`signal` module for constants representing signal numbers.
"""
# Same as os.kill, but the pid is given for you.
if self.isalive():
os.kill(self.pid, sig)
def getwinsize(self):
"""Return the window size of the pseudoterminal as a tuple (rows, cols).
"""
TIOCGWINSZ = getattr(termios, 'TIOCGWINSZ', 1074295912)
s = struct.pack('HHHH', 0, 0, 0, 0)
x = fcntl.ioctl(self.fd, TIOCGWINSZ, s)
return struct.unpack('HHHH', x)[0:2]
def setwinsize(self, rows, cols):
"""Set the terminal window size of the child tty.
This will cause a SIGWINCH signal to be sent to the child. This does not
change the physical window size. It changes the size reported to
TTY-aware applications like vi or curses -- applications that respond to
the SIGWINCH signal.
"""
return _setwinsize(self.fd, rows, cols)
class PtyProcessUnicode(PtyProcess):
"""Unicode wrapper around a process running in a pseudoterminal.
This class exposes a similar interface to :class:`PtyProcess`, but its read
methods return unicode, and its :meth:`write` accepts unicode.
"""
if PY3:
string_type = str
else:
string_type = unicode # analysis:ignore
def __init__(self, pid, fd, encoding='utf-8', codec_errors='strict'):
super(PtyProcessUnicode, self).__init__(pid, fd)
self.encoding = encoding
self.codec_errors = codec_errors
self.decoder = codecs.getincrementaldecoder(encoding)(errors=codec_errors)
def read(self, size=1024):
"""Read at most ``size`` bytes from the pty, return them as unicode.
Can block if there is nothing to read. Raises :exc:`EOFError` if the
terminal was closed.
The size argument still refers to bytes, not unicode code points.
"""
b = super(PtyProcessUnicode, self).read(size)
return self.decoder.decode(b, final=False)
def readline(self):
"""Read one line from the pseudoterminal, and return it as unicode.
Can block if there is nothing to read. Raises :exc:`EOFError` if the
terminal was closed.
"""
b = super(PtyProcessUnicode, self).readline()
return self.decoder.decode(b, final=False)
def write(self, s):
"""Write the unicode string ``s`` to the pseudoterminal.
Returns the number of bytes written.
"""
b = s.encode(self.encoding)
return super(PtyProcessUnicode, self).write(b)