SWBF2-Classic-Msh-Viewer/MeshViewerQt/Source/MshFile.cpp

570 lines
13 KiB
C++

#include "..\Header\MshFile.h"
#include <iostream>
// helper function to save data from file to any variable type
#define F2V(variableName) reinterpret_cast<char*>(&variableName)
/////////////////////////////////////////////////////////////////////////
// public constructor/destructor
MshFile::MshFile(const char * path)
: FileInterface(path)
{
import();
}
MshFile::~MshFile()
{
}
/////////////////////////////////////////////////////////////////////////
// private functions
void MshFile::import()
{
// go to file size information
m_fsMesh.seekg(4);
std::uint32_t tmp_fileSize;
std::list<ChunkHeader*> tmp_mainChunks;
// get all chunks under HEDR
m_fsMesh.read(F2V(tmp_fileSize), sizeof(tmp_fileSize));
loadChunks(tmp_mainChunks, m_fsMesh.tellg(), tmp_fileSize);
// evaulate HEDR subchunks (= find MSH2)
for (ChunkHeader* it : tmp_mainChunks)
{
if (!strcmp("MSH2", it->name))
{
// get all subchunks
std::list<ChunkHeader*> tmp_msh2Chunks;
loadChunks(tmp_msh2Chunks, it->position, it->size);
// evaluate MSH2 subchunks
analyseMsh2Chunks(tmp_msh2Chunks);
// clean up
while (!tmp_msh2Chunks.empty())
{
ChunkHeader* curs = tmp_msh2Chunks.front();
tmp_msh2Chunks.pop_front();
delete curs;
}
}
}
// clean up
while (!tmp_mainChunks.empty())
{
ChunkHeader* cur = tmp_mainChunks.front();
tmp_mainChunks.pop_front();
delete cur;
}
}
void MshFile::loadChunks(std::list<ChunkHeader*>& destination, std::streampos start, const std::uint32_t length)
{
// jump to first chunk
m_fsMesh.seekg(start);
do
{
ChunkHeader* tmp_header = new ChunkHeader();
// get information
m_fsMesh.read(F2V(tmp_header->name[0]), sizeof(tmp_header->name) - 1);
m_fsMesh.read(F2V(tmp_header->size), sizeof(tmp_header->size));
tmp_header->position = m_fsMesh.tellg();
// store information
destination.push_back(tmp_header);
// jump to next header
m_fsMesh.seekg(tmp_header->size, std::ios_base::cur);
// out of file. Maybe a size information is corrupted
if (!m_fsMesh.good())
{
//TODO: different way for output
std::cout << "WARNING: corrupted file. Trying to continue" << std::endl;
m_fsMesh.clear();
break;
}
} while (m_fsMesh.tellg() - start != length);
}
void MshFile::analyseMsh2Chunks(std::list<ChunkHeader*>& chunkList)
{
for (auto& it : chunkList)
{
// scene information
if (!strcmp("SINF", it->name))
{
// get SINF subchunks
std::list<ChunkHeader*> tmp_sinfChunks;
loadChunks(tmp_sinfChunks, it->position, it->size);
// evaluate SINF subchunks
for (auto& it : tmp_sinfChunks)
{
if (!strcmp("BBOX", it->name))
{
m_fsMesh.seekg(it->position);
// read in the quaternion
for (int i = 0; i < 4; i++)
m_fsMesh.read(F2V(m_sceneBbox.quaternion[i]), sizeof(float));
//read in the center
for (int i = 0; i < 3; i++)
m_fsMesh.read(F2V(m_sceneBbox.center[i]), sizeof(float));
//read in the extents
for (int i = 0; i < 3; i++)
m_fsMesh.read(F2V(m_sceneBbox.extents[i]), sizeof(float));
}
}
// clean up SINF subchunks
for (ChunkHeader* it : tmp_sinfChunks)
delete it;
}
// material list
else if (!strcmp("MATL", it->name))
{
// "useless" information how many MATD follow, jump over it
m_fsMesh.seekg(it->position);
m_fsMesh.seekg(sizeof(std::uint32_t), std::ios_base::cur);
// get all MATL subchunk
std::list<ChunkHeader*> tmp_matlChunks;
loadChunks(tmp_matlChunks, m_fsMesh.tellg(), it->size - 4);
// evaluate MATL subchunks
for (auto& it : tmp_matlChunks)
{
// This shouldn't be anything else than MATD
if (!strcmp("MATD", it->name))
{
// get all subchunks from MATD
std::list<ChunkHeader*> tmp_matdChunks;
loadChunks(tmp_matdChunks, it->position, it->size);
m_vTextureNames.push_back("");
// analyse MATD subchunks
analyseMatdChunks(tmp_matdChunks);
// clean up MATD subchunks
while (!tmp_matdChunks.empty())
{
ChunkHeader* cur = tmp_matdChunks.front();
tmp_matdChunks.pop_front();
delete cur;
}
}
}
// clean up MATL subchunks
while (!tmp_matlChunks.empty())
{
ChunkHeader* cur = tmp_matlChunks.front();
tmp_matlChunks.pop_front();
delete cur;
}
}
// model
else if (!strcmp("MODL", it->name))
{
Model* new_model = new Model;
// get all MODL subchunks
std::list<ChunkHeader*> tmp_chunks;
loadChunks(tmp_chunks, it->position, it->size);
// evaluate MODL subchunks
analyseModlChunks(new_model, tmp_chunks);
//clean up MODL subchunks
while (!tmp_chunks.empty())
{
ChunkHeader* cur = tmp_chunks.front();
tmp_chunks.pop_front();
delete cur;
}
// save Model data
m_vModels->push_back(new_model);
}
}
}
void MshFile::analyseMatdChunks(std::list<ChunkHeader*>& chunkList)
{
for (auto& it : chunkList)
{
if (!strcmp("TX0D", it->name))
{
m_fsMesh.seekg(it->position);
char* buffer = new char[it->size + 1];
*buffer = { 0 };
m_fsMesh.read(buffer, it->size);
m_vTextureNames.back() = buffer;
delete[] buffer;
}
}
}
void MshFile::analyseModlChunks(Model * dataDestination, std::list<ChunkHeader*>& chunkList)
{
for (auto& it : chunkList)
{
// model type
if (!strcmp("MTYP", it->name))
{
m_fsMesh.seekg(it->position);
std::uint32_t tmp_type;
m_fsMesh.read(F2V(tmp_type), sizeof(tmp_type));
dataDestination->type = (ModelTyp)tmp_type;
}
// parent name
else if (!strcmp("PRNT", it->name))
{
m_fsMesh.seekg(it->position);
char* buffer = new char[it->size + 1];
*buffer = { 0 };
m_fsMesh.read(buffer, it->size);
dataDestination->parent = buffer;
delete[] buffer;
}
// model name
else if (!strcmp("NAME", it->name))
{
m_fsMesh.seekg(it->position);
char* buffer = new char[it->size + 1];
*buffer = { 0 };
m_fsMesh.read(buffer, it->size);
dataDestination->name = buffer;
delete[] buffer;
}
// render flags
else if (!strcmp("FLGS", it->name))
{
m_fsMesh.seekg(it->position);
m_fsMesh.read(F2V(dataDestination->renderFlags), sizeof(dataDestination->renderFlags));
}
// translation
else if (!strcmp("TRAN", it->name))
{
float tmp_scale[3];
float tmp_rotation[4];
float tmp_trans[3];
m_fsMesh.seekg(it->position);
// read in the data
for (int i = 0; i < 3; i++)
m_fsMesh.read(F2V(tmp_scale[i]), sizeof(float));
for (int i = 0; i < 4; i++)
m_fsMesh.read(F2V(tmp_rotation[i]), sizeof(float));
for (int i = 0; i < 3; i++)
m_fsMesh.read(F2V(tmp_trans[i]), sizeof(float));
// modify the matrix
dataDestination->m4x4Translation.scale(tmp_scale[0], tmp_scale[1], tmp_scale[2]);
dataDestination->m4x4Translation.rotate(QQuaternion(tmp_rotation[3], tmp_rotation[0], tmp_rotation[1], tmp_rotation[2]));
dataDestination->m4x4Translation.translate(tmp_trans[0], tmp_trans[1], tmp_trans[2]);
}
// geometry data
else if (!strcmp("GEOM", it->name))
{
// get all GEOM subchunks
std::list<ChunkHeader*> tmp_geomChunks;
loadChunks(tmp_geomChunks, it->position, it->size);
// evaluate GEOM subchunks
analyseGeomChunks(dataDestination, tmp_geomChunks);
// clean up GEOM subchunks
while (!tmp_geomChunks.empty())
{
ChunkHeader* cur = tmp_geomChunks.front();
tmp_geomChunks.pop_front();
delete cur;
}
}
}
}
void MshFile::analyseGeomChunks(Model * dataDestination, std::list<ChunkHeader*>& chunkList)
{
for (auto& it : chunkList)
{
// segment
if (!strcmp("SEGM", it->name))
{
// get all SEGM subchunks
std::list<ChunkHeader*> tmp_segmChunks;
loadChunks(tmp_segmChunks, it->position, it->size);
// evaluate SEGM subchunks
analyseSegmChunks(dataDestination, tmp_segmChunks);
// clean up SEGM subchunk
while (!tmp_segmChunks.empty())
{
ChunkHeader* cur = tmp_segmChunks.front();
tmp_segmChunks.pop_front();
delete cur;
}
}
// cloth
else if (!strcmp("CLTH", it->name))
{
// get all CLTH subchunks
std::list<ChunkHeader*> tmp_clthChunks;
loadChunks(tmp_clthChunks, it->position, it->size);
// evaluate CLTH subchunks
analyseClthChunks(dataDestination, tmp_clthChunks);
// clean up CLTH subchunks
while (!tmp_clthChunks.empty())
{
ChunkHeader* cur = tmp_clthChunks.front();
tmp_clthChunks.pop_front();
delete cur;
}
}
}
}
void MshFile::analyseSegmChunks(Model * dataDestination, std::list<ChunkHeader*>& chunkList)
{
Segment* new_segment = new Segment;
for (auto& it : chunkList)
{
// material index
if (!strcmp("MATI", it->name))
{
m_fsMesh.seekg(it->position);
m_fsMesh.read(F2V(new_segment->textureIndex), sizeof(new_segment->textureIndex));
}
// position list (vertex)
else if (!strcmp("POSL", it->name))
{
readVertex(new_segment, it->position);
}
// normals
/*else if (!strcmp("NRML", it->name))
{
fsMesh.seekg(it->position);
std::uint32_t tempSize;
fsMesh.read(reinterpret_cast<char*>(&tempSize), sizeof(tempSize));
// List of normals
// long int - 4 - number of normal vectores stored in this list
// float[3][] - 12 each - UVW vector for each vertex
}*/
// uv
else if (!strcmp("UV0L", it->name))
{
readUV(new_segment, it->position);
}
// polygons (indices into vertex/uv list)
else if (!strcmp("STRP", it->name))
{
// don't get null, bone, shadowMesh and hidden mesh indices
if (dataDestination->type == null ||
dataDestination->type == bone ||
dataDestination->type == shadowMesh ||
dataDestination->renderFlags == 1)
continue;
// jump to the data section and read the size;
std::uint32_t tmp_size;
m_fsMesh.seekg(it->position);
m_fsMesh.read(F2V(tmp_size), sizeof(tmp_size));
int highBitCount(0);
std::vector<uint32_t> new_poly;
for (unsigned int i = 0; i < tmp_size; i++)
{
// ReadData
std::uint16_t tmp_value;
m_fsMesh.read(F2V(tmp_value), sizeof(tmp_value));
// Check if highbit is set
if (tmp_value >> 15)
{
highBitCount++;
// remove the high bit, to get the actually value
tmp_value = (std::uint16_t(tmp_value << 1) >> 1);
}
// save data
new_poly.push_back((std::uint32_t)tmp_value);
// if the last 2 highBits are set, it was a new poly
if (highBitCount == 2)
{
// reset highBitCount
highBitCount = 0;
// remove the last two values..
std::uint32_t temp[2];
for (int i = 0; i < 2; i++)
{
temp[i] = new_poly.back();
new_poly.pop_back();
}
// ..save the old polygon..
new_segment->polyIndices.push_back(new_poly);
// ..and move the values to a new polygon
new_poly.clear();
for (int i = 1; i >= 0; i--)
new_poly.push_back(temp[i]);
} // if high bit set
} // for all values
// save the last polygon (no 2 high bit followed)
new_segment->polyIndices.push_back(new_poly);
// kick the first element, it's empty as a reason of the algo above;
new_segment->polyIndices.erase(new_segment->polyIndices.begin());
}
}
dataDestination->segmList.push_back(new_segment);
}
void MshFile::analyseClthChunks(Model * dataDestination, std::list<ChunkHeader*>& chunkList)
{
Segment* new_segment = new Segment;
for (auto& it : chunkList)
{
// texture name
if (!strcmp("CTEX", it->name))
{
// read the texture name
m_fsMesh.seekg(it->position);
char* buffer = new char[it->size + 1];
*buffer = { 0 };
m_fsMesh.read(buffer, it->size);
// search if it is already known
bool tmp_found(false);
for (unsigned int i = 0; i < m_vTextureNames.size(); i++)
{
if (!strcmp(buffer, m_vTextureNames[i].c_str()))
{
// if found, save the index and stop searching
new_segment->textureIndex = i;
tmp_found = true;
break;
}
}
// if it was not found add the texturename to the list
if (!tmp_found)
{
m_vTextureNames.push_back(std::string(buffer));
new_segment->textureIndex = m_vTextureNames.size() - 1;
}
delete[] buffer;
}
// position list (vertex)
else if (!strcmp("CPOS", it->name))
{
readVertex(new_segment, it->position);
}
// uv
else if (!strcmp("CUV0", it->name))
{
readUV(new_segment, it->position);
}
// triangles (indices into vertex/uv list)
else if (!strcmp("CMSH", it->name))
{
// jump to the data section and read the size;
std::uint32_t tmp_size;
m_fsMesh.seekg(it->position);
m_fsMesh.read(F2V(tmp_size), sizeof(tmp_size));
std::vector<uint32_t> new_poly;
// for every triangle..
for (unsigned int i = 0; i < tmp_size * 3; i += 3)
{
new_poly.clear();
// ..get the 3 indices and save them
for (int j = 0; j < 3; j++)
{
std::uint32_t tmp_value;
m_fsMesh.read(F2V(tmp_value), sizeof(std::uint32_t));
new_poly.push_back(tmp_value);
}
new_segment->polyIndices.push_back(new_poly);
}
}
}
dataDestination->segmList.push_back(new_segment);
}
void MshFile::readVertex(Segment * dataDestination, std::streampos position)
{
std::uint32_t tmp_size;
m_fsMesh.seekg(position);
m_fsMesh.read(F2V(tmp_size), sizeof(tmp_size));
dataDestination->vertex = new float[tmp_size * 3];
for (unsigned int i = 0; i < tmp_size * 3; i++)
m_fsMesh.read(F2V(dataDestination->vertex[i]), sizeof(float));
}
void MshFile::readUV(Segment * dataDestination, std::streampos position)
{
std::uint32_t tmp_size;
m_fsMesh.seekg(position);
m_fsMesh.read(F2V(tmp_size), sizeof(tmp_size));
dataDestination->uv = new float[tmp_size * 2];
for (unsigned int i = 0; i < tmp_size * 2; i++)
m_fsMesh.read(F2V(dataDestination->uv[i]), sizeof(float));
}