SWBF2-Classic-Msh-Viewer/QtMeshViewer/Source/MshFile.cpp

737 lines
19 KiB
C++

#include "..\Header\MshFile.h"
#include "..\Header\tga.h"
#include <QColor>
// helper function to save data from file to any variable type
#define F2V(variableName) reinterpret_cast<char*>(&variableName)
/////////////////////////////////////////////////////////////////////////
// public constructor/destructor
MshFile::MshFile(QString path, QObject * parent)
: FileInterface(path, parent)
{
import();
}
MshFile::~MshFile()
{
}
/////////////////////////////////////////////////////////////////////////
// private functions
void MshFile::import()
{
// go to file size information
m_file.seekg(4);
std::uint32_t tmp_fileSize;
std::list<ChunkHeader*> tmp_mainChunks;
// get all chunks under HEDR
m_file.read(F2V(tmp_fileSize), sizeof(tmp_fileSize));
loadChunks(tmp_mainChunks, m_file.tellg(), tmp_fileSize);
// evaulate HEDR subchunks (= find MSH2)
for (ChunkHeader* it : tmp_mainChunks)
{
if (!strcmp("MSH2", it->name))
{
// get all subchunks
std::list<ChunkHeader*> tmp_msh2Chunks;
loadChunks(tmp_msh2Chunks, it->position, it->size);
// evaluate MSH2 subchunks
analyseMsh2Chunks(tmp_msh2Chunks);
// clean up
while (!tmp_msh2Chunks.empty())
{
ChunkHeader* curs = tmp_msh2Chunks.front();
tmp_msh2Chunks.pop_front();
delete curs;
}
}
}
// clean up
while (!tmp_mainChunks.empty())
{
ChunkHeader* cur = tmp_mainChunks.front();
tmp_mainChunks.pop_front();
delete cur;
}
}
void MshFile::loadChunks(std::list<ChunkHeader*>& destination, std::streampos start, const std::uint32_t length)
{
// jump to first chunk
m_file.seekg(start);
do
{
ChunkHeader* tmp_header = new ChunkHeader();
// get information
m_file.read(F2V(tmp_header->name[0]), sizeof(tmp_header->name) - 1);
m_file.read(F2V(tmp_header->size), sizeof(tmp_header->size));
tmp_header->position = m_file.tellg();
// store information
destination.push_back(tmp_header);
// jump to next header
m_file.seekg(tmp_header->size, std::ios_base::cur);
// out of file. Maybe a size information is corrupted
if (!m_file.good())
{
emit sendMessage("WARNING: corrupted file. Trying to continue..", 1);
m_file.clear();
break;
}
} while (m_file.tellg() - start != length);
}
void MshFile::analyseMsh2Chunks(std::list<ChunkHeader*>& chunkList)
{
for (auto& it : chunkList)
{
// scene information
if (!strcmp("SINF", it->name))
{
// get SINF subchunks
std::list<ChunkHeader*> tmp_sinfChunks;
loadChunks(tmp_sinfChunks, it->position, it->size);
// evaluate SINF subchunks
for (auto& it : tmp_sinfChunks)
{
if (!strcmp("BBOX", it->name))
{
m_file.seekg(it->position);
// read in the quaternion
float tmp_quat[4];
for (int i = 0; i < 4; i++)
m_file.read(F2V(tmp_quat[i]), sizeof(float));
m_sceneBbox.rotation.setX(tmp_quat[0]);
m_sceneBbox.rotation.setY(tmp_quat[1]);
m_sceneBbox.rotation.setZ(tmp_quat[2]);
m_sceneBbox.rotation.setScalar(tmp_quat[3]);
//read in the center
for (int i = 0; i < 3; i++)
m_file.read(F2V(m_sceneBbox.center[i]), sizeof(float));
//read in the extents
for (int i = 0; i < 3; i++)
m_file.read(F2V(m_sceneBbox.extents[i]), sizeof(float));
}
}
// clean up SINF subchunks
for (ChunkHeader* it : tmp_sinfChunks)
delete it;
}
// material list
else if (!strcmp("MATL", it->name))
{
// "useless" information how many MATD follow, jump over it
m_file.seekg(it->position);
m_file.seekg(sizeof(std::uint32_t), std::ios_base::cur);
// get all MATL subchunk
std::list<ChunkHeader*> tmp_matlChunks;
loadChunks(tmp_matlChunks, m_file.tellg(), it->size - 4);
// evaluate MATL subchunks
for (auto& it : tmp_matlChunks)
{
// This shouldn't be anything else than MATD
if (!strcmp("MATD", it->name))
{
// get all subchunks from MATD
std::list<ChunkHeader*> tmp_matdChunks;
loadChunks(tmp_matdChunks, it->position, it->size);
m_materials->push_back(Material());
// analyse MATD subchunks
analyseMatdChunks(tmp_matdChunks);
// clean up MATD subchunks
while (!tmp_matdChunks.empty())
{
ChunkHeader* cur = tmp_matdChunks.front();
tmp_matdChunks.pop_front();
delete cur;
}
}
}
// clean up MATL subchunks
while (!tmp_matlChunks.empty())
{
ChunkHeader* cur = tmp_matlChunks.front();
tmp_matlChunks.pop_front();
delete cur;
}
}
// model
else if (!strcmp("MODL", it->name))
{
Model* new_model = new Model;
m_currentType = ModelTyp::null;
m_currentRenderFlag = -1;
// get all MODL subchunks
std::list<ChunkHeader*> tmp_chunks;
loadChunks(tmp_chunks, it->position, it->size);
// evaluate MODL subchunks
analyseModlChunks(new_model, tmp_chunks);
//clean up MODL subchunks
while (!tmp_chunks.empty())
{
ChunkHeader* cur = tmp_chunks.front();
tmp_chunks.pop_front();
delete cur;
}
// save Model data
m_models->push_back(new_model);
}
}
}
void MshFile::analyseMatdChunks(std::list<ChunkHeader*>& chunkList)
{
for (auto& it : chunkList)
{
// name
if (!strcmp("NAME", it->name))
{
m_file.seekg(it->position);
char* buffer = new char[it->size + 1];
*buffer = { 0 };
m_file.read(buffer, it->size);
m_materials->back().name = buffer;
delete[] buffer;
}
// data
else if(!strcmp("DATA", it->name))
{
m_file.seekg(it->position);
// diffuse
for (unsigned int i = 0; i < 4; i++)
m_file.read(F2V(m_materials->back().diffuseColor[i]), sizeof(float));
// specular
for (unsigned int i = 0; i < 4; i++)
m_file.read(F2V(m_materials->back().specularColor[i]), sizeof(float));
// ambient
for (unsigned int i = 0; i < 4; i++)
m_file.read(F2V(m_materials->back().ambientColor[i]), sizeof(float));
// shininess
m_file.read(F2V(m_materials->back().shininess), sizeof(float));
}
// TODO: evaluate specular, gloss,.. and save values
// attributes
else if (!strcmp("ATRB", it->name))
{
// read the attributes
m_file.seekg(it->position);
std::uint8_t flag, render, data[2];
m_file.read(F2V(flag), sizeof(flag));
m_file.read(F2V(render), sizeof(render));
m_file.read(F2V(data[0]), sizeof(data[0]));
m_file.read(F2V(data[1]), sizeof(data[1]));
// flags
// 0: emissive
// 1: glow
// 2: single-sided transparency
// 3: double-sided transparency
// 4: hard-edged transparency
// 5: per-pixel lighting
// 6: additive transparency
// 7: specular
for (unsigned int i = 0; i < 8; i++)
m_materials->back().flags[i] = (std::uint8_t)(flag << (7 - i)) >> 7;
m_materials->back().transparent = m_materials->back().flags[2] || m_materials->back().flags[3] || m_materials->back().flags[4] || m_materials->back().flags[6];
}
// texture zero
else if (!strcmp("TX0D", it->name))
{
// get the texture name
m_file.seekg(it->position);
char* buffer = new char[it->size + 1];
*buffer = { 0 };
m_file.read(buffer, it->size);
m_materials->back().textureName = buffer;
delete[] buffer;
// load the texture if the name is not empty
if (!m_materials->back().textureName.isEmpty())
loadTexture(m_materials->back().texture, m_filepath + "/" + m_materials->back().textureName);
}
}
}
void MshFile::analyseModlChunks(Model * dataDestination, std::list<ChunkHeader*>& chunkList)
{
for (auto& it : chunkList)
{
// model type
if (!strcmp("MTYP", it->name))
{
m_file.seekg(it->position);
std::uint32_t tmp_type;
m_file.read(F2V(tmp_type), sizeof(tmp_type));
m_currentType = (ModelTyp)tmp_type;
}
// parent name
else if (!strcmp("PRNT", it->name))
{
m_file.seekg(it->position);
char* buffer = new char[it->size + 1];
*buffer = { 0 };
m_file.read(buffer, it->size);
dataDestination->parent = buffer;
delete[] buffer;
}
// model name
else if (!strcmp("NAME", it->name))
{
m_file.seekg(it->position);
char* buffer = new char[it->size + 1];
*buffer = { 0 };
m_file.read(buffer, it->size);
dataDestination->name = buffer;
delete[] buffer;
}
// render flags
else if (!strcmp("FLGS", it->name))
{
m_file.seekg(it->position);
m_file.read(F2V(m_currentRenderFlag), sizeof(m_currentRenderFlag));
}
// translation
else if (!strcmp("TRAN", it->name))
{
float tmp_scale[3];
float tmp_rotation[4];
float tmp_trans[3];
m_file.seekg(it->position);
// read in the data
for (int i = 0; i < 3; i++)
m_file.read(F2V(tmp_scale[i]), sizeof(float));
for (int i = 0; i < 4; i++)
m_file.read(F2V(tmp_rotation[i]), sizeof(float));
for (int i = 0; i < 3; i++)
m_file.read(F2V(tmp_trans[i]), sizeof(float));
// modify the matrix and quaternion
dataDestination->m4x4Translation.scale(tmp_scale[0], tmp_scale[1], tmp_scale[2]);
dataDestination->m4x4Translation.translate(tmp_trans[0], tmp_trans[1], tmp_trans[2]);
dataDestination->quadRotation.setVector(QVector3D(tmp_rotation[0], tmp_rotation[1], tmp_rotation[2]));
dataDestination->quadRotation.setScalar(tmp_rotation[3]);
dataDestination->m4x4Translation = getParentMatrix(dataDestination->parent) * dataDestination->m4x4Translation;
dataDestination->quadRotation = getParentRotation(dataDestination->parent) * dataDestination->quadRotation;
}
// geometry data
else if (!strcmp("GEOM", it->name))
{
// don't get null, bone, shadowMesh and hidden mesh indices
if (m_currentType == null || m_currentType == bone || m_currentType == shadowMesh || m_currentRenderFlag == 1)
continue;
// get all GEOM subchunks
std::list<ChunkHeader*> tmp_geomChunks;
loadChunks(tmp_geomChunks, it->position, it->size);
// evaluate GEOM subchunks
analyseGeomChunks(dataDestination, tmp_geomChunks);
// clean up GEOM subchunks
while (!tmp_geomChunks.empty())
{
ChunkHeader* cur = tmp_geomChunks.front();
tmp_geomChunks.pop_front();
delete cur;
}
}
}
}
void MshFile::analyseGeomChunks(Model * dataDestination, std::list<ChunkHeader*>& chunkList)
{
for (auto& it : chunkList)
{
// segment
if (!strcmp("SEGM", it->name))
{
// get all SEGM subchunks
std::list<ChunkHeader*> tmp_segmChunks;
loadChunks(tmp_segmChunks, it->position, it->size);
// evaluate SEGM subchunks
analyseSegmChunks(dataDestination, tmp_segmChunks);
// clean up SEGM subchunk
while (!tmp_segmChunks.empty())
{
ChunkHeader* cur = tmp_segmChunks.front();
tmp_segmChunks.pop_front();
delete cur;
}
}
// cloth
else if (!strcmp("CLTH", it->name))
{
// get all CLTH subchunks
std::list<ChunkHeader*> tmp_clthChunks;
loadChunks(tmp_clthChunks, it->position, it->size);
// evaluate CLTH subchunks
analyseClthChunks(dataDestination, tmp_clthChunks);
// clean up CLTH subchunks
while (!tmp_clthChunks.empty())
{
ChunkHeader* cur = tmp_clthChunks.front();
tmp_clthChunks.pop_front();
delete cur;
}
}
}
}
void MshFile::analyseSegmChunks(Model * dataDestination, std::list<ChunkHeader*>& chunkList)
{
Segment* new_segment = new Segment;
for (auto& it : chunkList)
{
// material index
if (!strcmp("MATI", it->name))
{
m_file.seekg(it->position);
m_file.read(F2V(new_segment->textureIndex), sizeof(new_segment->textureIndex));
}
// position list (vertex)
else if (!strcmp("POSL", it->name))
{
readVertex(new_segment, it->position);
}
// normals
else if (!strcmp("NRML", it->name))
{
std::uint32_t tmp_size;
m_file.seekg(it->position);
m_file.read(F2V(tmp_size), sizeof(tmp_size));
if (tmp_size < new_segment->vertices.size())
{
emit sendMessage("WARNING: too less normals " + QString::number(tmp_size) + " < " + QString::number(new_segment->vertices.size()), 1);
for (unsigned int i = new_segment->vertices.size(); i != tmp_size; i--)
for (unsigned int j = 0; j < 3; j++)
new_segment->vertices[i - 1].normal[j] = 0;
}
else if (tmp_size > new_segment->vertices.size())
{
emit sendMessage("WARNING: too many normals " + QString::number(tmp_size) + " > " + QString::number(new_segment->vertices.size()), 1);
tmp_size = new_segment->vertices.size();
}
for (unsigned int i = 0; i < tmp_size; i++)
for (unsigned int j = 0; j < 3; j++)
m_file.read(F2V(new_segment->vertices[i].normal[j]), sizeof(float));
}
// uv
else if (!strcmp("UV0L", it->name))
{
readUV(new_segment, it->position);
}
// polygons (indices into vertex/uv list)
else if (!strcmp("STRP", it->name))
{
// jump to the data section and read the size;
std::uint32_t tmp_size;
m_file.seekg(it->position);
m_file.read(F2V(tmp_size), sizeof(tmp_size));
int highBitCount(0);
QVector<GLuint> tmp_buffer;
for (unsigned int i = 0; i < tmp_size; i++)
{
// ReadData
std::uint16_t tmp_value;
m_file.read(F2V(tmp_value), sizeof(tmp_value));
// Check if highbit is set
if (tmp_value >> 15)
{
highBitCount++;
// remove the high bit, to get the actually value
tmp_value = (std::uint16_t(tmp_value << 1) >> 1);
}
// save data
tmp_buffer.push_back((GLuint)tmp_value);
// if the last 2 highBits are set, it was a new poly
if (highBitCount == 2)
{
// reset highBitCount
highBitCount = 0;
if (tmp_buffer.size() == 5)
{
for (size_t i = 0; i < 3; i++)
new_segment->indices.push_back(tmp_buffer.takeFirst());
}
else if (tmp_buffer.size() > 5)
{
unsigned int tmp_multiPolySize = tmp_buffer.size() - 2;
// for every triangle of the multi polygon..
for (unsigned int tri = 0; tri < tmp_multiPolySize - 2; tri++)
// ..calculate the edge indices
for (int triEdge = 0; triEdge < 3; triEdge++)
new_segment->indices.push_back(tmp_buffer[(tri + triEdge - ((tri % 2) * (triEdge - 1) * 2))]);
tmp_buffer.remove(0, tmp_multiPolySize);
}
} // if 2 high bits are set
} // for all values
// save the last polygon (no 2 high bit followed)
if (tmp_buffer.size() == 3)
{
for (size_t i = 0; i < 3; i++)
new_segment->indices.push_back(tmp_buffer.takeFirst());
}
else if (tmp_buffer.size() > 3)
{
unsigned int tmp_multiPolySize = tmp_buffer.size();
// for every triangle of the multi polygon..
for (unsigned int tri = 0; tri < tmp_multiPolySize - 2; tri++)
// ..calculate the edge indices
for (int triEdge = 0; triEdge < 3; triEdge++)
new_segment->indices.push_back(tmp_buffer[(tri + triEdge - ((tri % 2) * (triEdge - 1) * 2))]);
}
}
}
dataDestination->segmList.push_back(new_segment);
}
void MshFile::analyseClthChunks(Model * dataDestination, std::list<ChunkHeader*>& chunkList)
{
Segment* new_segment = new Segment;
for (auto& it : chunkList)
{
// texture name
if (!strcmp("CTEX", it->name))
{
// read the texture name
m_file.seekg(it->position);
char* buffer = new char[it->size + 1];
*buffer = { 0 };
m_file.read(buffer, it->size);
m_materials->push_back(Material());
m_materials->back().name = "Cloth Material";
m_materials->back().textureName = QString(buffer);
m_materials->back().shininess = 10;
if (!m_materials->back().textureName.isEmpty())
loadTexture(m_materials->back().texture, m_filepath + "/" + m_materials->back().textureName);
new_segment->textureIndex = m_materials->size() - 1;
delete[] buffer;
}
// position list (vertex)
else if (!strcmp("CPOS", it->name))
{
readVertex(new_segment, it->position);
}
// uv
else if (!strcmp("CUV0", it->name))
{
readUV(new_segment, it->position);
}
// triangles (indices into vertex/uv list)
else if (!strcmp("CMSH", it->name))
{
// jump to the data section and read the size;
std::uint32_t tmp_size;
m_file.seekg(it->position);
m_file.read(F2V(tmp_size), sizeof(tmp_size));
// for every triangle..
for (unsigned int i = 0; i < tmp_size * 3; i++)
{
std::uint32_t tmp_value;
m_file.read(F2V(tmp_value), sizeof(std::uint32_t));
new_segment->indices.push_back((GLuint)tmp_value);
}
}
}
dataDestination->segmList.push_back(new_segment);
}
void MshFile::readVertex(Segment * dataDestination, std::streampos position)
{
std::uint32_t tmp_size;
m_file.seekg(position);
m_file.read(F2V(tmp_size), sizeof(tmp_size));
for (unsigned int i = 0; i < tmp_size; i++)
{
float tmp[3];
for (unsigned int j = 0; j < 3; j++)
m_file.read(F2V(tmp[j]), sizeof(float));
VertexData new_data;
new_data.position = QVector3D(tmp[0], tmp[1], tmp[2]);
dataDestination->vertices.push_back(new_data);
}
}
void MshFile::readUV(Segment * dataDestination, std::streampos position)
{
std::uint32_t tmp_size;
m_file.seekg(position);
m_file.read(F2V(tmp_size), sizeof(tmp_size));
if (tmp_size < dataDestination->vertices.size())
{
emit sendMessage("WARNING: too less UVs " + QString::number(tmp_size) + " < " + QString::number(dataDestination->vertices.size()),1);
for (unsigned int i = dataDestination->vertices.size(); i != tmp_size; i--)
for (unsigned int j = 0; j < 2; j++)
dataDestination->vertices[i - 1].texCoord[j] = 0;
}
else if (tmp_size > dataDestination->vertices.size())
{
emit sendMessage("WARNING: too many UVs " + QString::number(tmp_size) + " > " + QString::number(dataDestination->vertices.size()), 1);
tmp_size = dataDestination->vertices.size();
}
for (unsigned int i = 0; i < tmp_size; i++)
for (unsigned int j = 0; j < 2; j++)
m_file.read(F2V(dataDestination->vertices[i].texCoord[j]), sizeof(float));
}
void MshFile::loadTexture(QOpenGLTexture *& destination, QString filepath)
{
bool loadSuccess(false);
QImage img = loadTga(filepath, loadSuccess);
if (!loadSuccess)
{
emit sendMessage("WARNING: texture not found or corrupted: " + m_materials->back().name, 1);
img = QImage(1, 1, QImage::Format_RGB32);
img.fill(QColor(m_materials->back().diffuseColor[0] * 255, m_materials->back().diffuseColor[1] * 255, m_materials->back().diffuseColor[2] * 255));
m_materials->back().textureName += " *";
}
// Load image to OglTexture
QOpenGLTexture* new_texture = new QOpenGLTexture(img.mirrored());
// Set nearest filtering mode for texture minification
new_texture->setMinificationFilter(QOpenGLTexture::Nearest);
// Set bilinear filtering mode for texture magnification
new_texture->setMagnificationFilter(QOpenGLTexture::Linear);
// Wrap texture coordinates by repeating
// f.ex. texture coordinate (1.1, 1.2) is same as (0.1, 0.2)
new_texture->setWrapMode(QOpenGLTexture::Repeat);
destination = new_texture;
}
QMatrix4x4 MshFile::getParentMatrix(std::string parent) const
{
QMatrix4x4 matrix;
for (auto& it : *m_models)
{
if (!strcmp(parent.c_str(), it->name.c_str()))
{
matrix = getParentMatrix(it->parent) * it->m4x4Translation;
break;
}
}
return matrix;
}
QQuaternion MshFile::getParentRotation(std::string parent) const
{
QQuaternion rotation;
for (auto& it : *m_models)
{
if (!strcmp(parent.c_str(), it->name.c_str()))
{
rotation = getParentRotation(it->parent) * it->quadRotation;
break;
}
}
return rotation;
}