Blender-ZeroEngine-MSH2-Plugin/src_research_readme/blender_2.43_scripts/mesh_skin.py

640 lines
18 KiB
Python

#!BPY
"""
Name: 'Skin Faces/Edge-Loops'
Blender: 243
Group: 'MeshFaceKey'
Tooltip: 'Select 2 vert loops, then run this script.'
"""
__author__ = "Campbell Barton AKA Ideasman"
__url__ = ["blenderartists.org", "www.blender.org"]
__version__ = "1.1 2006/12/26"
__bpydoc__ = """\
With this script vertex loops can be skinned: faces are created to connect the
selected loops of vertices.
Usage:
In mesh Edit mode select the vertices of the loops (closed paths / curves of
vertices: circles, for example) that should be skinned, then run this script.
A pop-up will provide further options, if the results of a method are not adequate try one of the others.
"""
# $Id: mesh_skin.py 20333 2009-05-22 03:45:46Z campbellbarton $
#
# --------------------------------------------------------------------------
# Skin Selected edges 1.0 By Campbell Barton (AKA Ideasman)
# --------------------------------------------------------------------------
# ***** BEGIN GPL LICENSE BLOCK *****
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# ***** END GPL LICENCE BLOCK *****
# --------------------------------------------------------------------------
# Made by Ideasman/Campbell 2005/06/15 - cbarton@metavr.com
import Blender
import bpy
from Blender import Window
from Blender.Mathutils import MidpointVecs, Vector
from Blender.Mathutils import AngleBetweenVecs as _AngleBetweenVecs_
import BPyMessages
from Blender.Draw import PupMenu
BIG_NUM = 1<<30
global CULL_METHOD
CULL_METHOD = 0
def AngleBetweenVecs(a1,a2):
try:
return _AngleBetweenVecs_(a1,a2)
except:
return 180.0
class edge(object):
__slots__ = 'v1', 'v2', 'co1', 'co2', 'length', 'removed', 'match', 'cent', 'angle', 'next', 'prev', 'normal', 'fake'
def __init__(self, v1,v2):
self.v1 = v1
self.v2 = v2
co1, co2= v1.co, v2.co
self.co1= co1
self.co2= co2
# uv1 uv2 vcol1 vcol2 # Add later
self.length = (co1 - co2).length
self.removed = 0 # Have we been culled from the eloop
self.match = None # The other edge were making a face with
self.cent= MidpointVecs(co1, co2)
self.angle= 0.0
self.fake= False
class edgeLoop(object):
__slots__ = 'centre', 'edges', 'normal', 'closed', 'backup_edges'
def __init__(self, loop, me, closed): # Vert loop
# Use next and prev, nextDist, prevDist
# Get Loops centre.
fac= len(loop)
verts = me.verts
self.centre= reduce(lambda a,b: a+verts[b].co/fac, loop, Vector())
# Convert Vert loop to Edges.
self.edges = [edge(verts[loop[vIdx-1]], verts[loop[vIdx]]) for vIdx in xrange(len(loop))]
if not closed:
self.edges[0].fake = True # fake edge option
self.closed = closed
# Assign linked list
for eIdx in xrange(len(self.edges)-1):
self.edges[eIdx].next = self.edges[eIdx+1]
self.edges[eIdx].prev = self.edges[eIdx-1]
# Now last
self.edges[-1].next = self.edges[0]
self.edges[-1].prev = self.edges[-2]
# GENERATE AN AVERAGE NORMAL FOR THE WHOLE LOOP.
self.normal = Vector()
for e in self.edges:
n = (self.centre-e.co1).cross(self.centre-e.co2)
# Do we realy need tot normalize?
n.normalize()
self.normal += n
# Generate the angle
va= e.cent - e.prev.cent
vb= e.next.cent - e.cent
e.angle= AngleBetweenVecs(va, vb)
# Blur the angles
#for e in self.edges:
# e.angle= (e.angle+e.next.angle)/2
# Blur the angles
#for e in self.edges:
# e.angle= (e.angle+e.prev.angle)/2
self.normal.normalize()
# Generate a normal for each edge.
for e in self.edges:
n1 = e.co1
n2 = e.co2
n3 = e.prev.co1
a = n1-n2
b = n1-n3
normal1 = a.cross(b)
normal1.normalize()
n1 = e.co2
n3 = e.next.co2
n2 = e.co1
a = n1-n2
b = n1-n3
normal2 = a.cross(b)
normal2.normalize()
# Reuse normal1 var
normal1 += normal1 + normal2
normal1.normalize()
e.normal = normal1
#print e.normal
def backup(self):
# Keep a backup of the edges
self.backup_edges = self.edges[:]
def restore(self):
self.edges = self.backup_edges[:]
for e in self.edges:
e.removed = 0
def reverse(self):
self.edges.reverse()
self.normal.negate()
for e in self.edges:
e.normal.negate()
e.v1, e.v2 = e.v2, e.v1
e.co1, e.co2 = e.co2, e.co1
e.next, e.prev = e.prev, e.next
def removeSmallest(self, cullNum, otherLoopLen):
'''
Removes N Smallest edges and backs up the loop,
this is so we can loop between 2 loops as if they are the same length,
backing up and restoring incase the loop needs to be skinned with another loop of a different length.
'''
global CULL_METHOD
if CULL_METHOD == 1: # Shortest edge
eloopCopy = self.edges[:]
# Length sort, smallest first
try: eloopCopy.sort(key = lambda e1: e1.length)
except: eloopCopy.sort(lambda e1, e2: cmp(e1.length, e2.length ))
# Dont use atm
#eloopCopy.sort(lambda e1, e2: cmp(e1.angle*e1.length, e2.angle*e2.length)) # Length sort, smallest first
#eloopCopy.sort(lambda e1, e2: cmp(e1.angle, e2.angle)) # Length sort, smallest first
remNum = 0
for i, e in enumerate(eloopCopy):
if not e.fake:
e.removed = 1
self.edges.remove( e ) # Remove from own list, still in linked list.
remNum += 1
if not remNum < cullNum:
break
else: # CULL METHOD is even
culled = 0
step = int(otherLoopLen / float(cullNum)) * 2
currentEdge = self.edges[0]
while culled < cullNum:
# Get the shortest face in the next STEP
step_count= 0
bestAng= 360.0
smallestEdge= None
while step_count<=step or smallestEdge==None:
step_count+=1
if not currentEdge.removed: # 0 or -1 will not be accepted
if currentEdge.angle<bestAng and not currentEdge.fake:
smallestEdge= currentEdge
bestAng= currentEdge.angle
currentEdge = currentEdge.next
# In that stepping length we have the smallest edge.remove it
smallestEdge.removed = 1
self.edges.remove(smallestEdge)
# Start scanning from the edge we found? - result is over fanning- no good.
#currentEdge= smallestEdge.next
culled+=1
# Returns face edges.
# face must have edge data.
def getSelectedEdges(me, ob):
MESH_MODE= Blender.Mesh.Mode()
if MESH_MODE & Blender.Mesh.SelectModes.EDGE or MESH_MODE & Blender.Mesh.SelectModes.VERTEX:
Blender.Mesh.Mode(Blender.Mesh.SelectModes.EDGE)
edges= [ ed for ed in me.edges if ed.sel ]
# print len(edges), len(me.edges)
Blender.Mesh.Mode(MESH_MODE)
return edges
elif MESH_MODE & Blender.Mesh.SelectModes.FACE:
Blender.Mesh.Mode(Blender.Mesh.SelectModes.EDGE)
# value is [edge, face_sel_user_in]
'''
try: # Python 2.4 only
edge_dict= dict((ed.key, [ed, 0]) for ed in me.edges)
except:
'''
# Cant try 2.4 syntax because python 2.3 will complain still
edge_dict= dict([(ed.key, [ed, 0]) for ed in me.edges])
for f in me.faces:
if f.sel:
for edkey in f.edge_keys:
edge_dict[edkey][1] += 1
Blender.Mesh.Mode(MESH_MODE)
return [ ed_data[0] for ed_data in edge_dict.itervalues() if ed_data[1] == 1 ]
def getVertLoops(selEdges, me):
'''
return a list of vert loops, closed and open [(loop, closed)...]
'''
mainVertLoops = []
# second method
tot = len(me.verts)
vert_siblings = [[] for i in xrange(tot)]
vert_used = [False] * tot
for ed in selEdges:
i1, i2 = ed.key
vert_siblings[i1].append(i2)
vert_siblings[i2].append(i1)
# find the first used vert and keep looping.
for i in xrange(tot):
if vert_siblings[i] and not vert_used[i]:
sbl = vert_siblings[i] # siblings
if len(sbl) > 2:
return None
vert_used[i] = True
# do an edgeloop seek
if len(sbl) == 2:
contextVertLoop= [sbl[0], i, sbl[1]] # start the vert loop
vert_used[contextVertLoop[ 0]] = True
vert_used[contextVertLoop[-1]] = True
else:
contextVertLoop= [i, sbl[0]]
vert_used[contextVertLoop[ 1]] = True
# Always seek up
ok = True
while ok:
ok = False
closed = False
sbl = vert_siblings[contextVertLoop[-1]]
if len(sbl) == 2:
next = sbl[not sbl.index( contextVertLoop[-2] )]
if vert_used[next]:
closed = True
# break
else:
contextVertLoop.append( next ) # get the vert that isnt the second last
vert_used[next] = True
ok = True
# Seek down as long as the starting vert was not at the edge.
if not closed and len(vert_siblings[i]) == 2:
ok = True
while ok:
ok = False
sbl = vert_siblings[contextVertLoop[0]]
if len(sbl) == 2:
next = sbl[not sbl.index( contextVertLoop[1] )]
if vert_used[next]:
closed = True
else:
contextVertLoop.insert(0, next) # get the vert that isnt the second last
vert_used[next] = True
ok = True
mainVertLoops.append((contextVertLoop, closed))
verts = me.verts
# convert from indicies to verts
# mainVertLoops = [([verts[i] for i in contextVertLoop], closed) for contextVertLoop, closed in mainVertLoops]
# print len(mainVertLoops)
return mainVertLoops
def skin2EdgeLoops(eloop1, eloop2, me, ob, MODE):
new_faces= [] #
# Make sure e1 loops is bigger then e2
if len(eloop1.edges) != len(eloop2.edges):
if len(eloop1.edges) < len(eloop2.edges):
eloop1, eloop2 = eloop2, eloop1
eloop1.backup() # were about to cull faces
CULL_FACES = len(eloop1.edges) - len(eloop2.edges)
eloop1.removeSmallest(CULL_FACES, len(eloop1.edges))
else:
CULL_FACES = 0
# First make sure poly vert loops are in sync with eachother.
# The vector allong which we are skinning.
skinVector = eloop1.centre - eloop2.centre
loopDist = skinVector.length
# IS THE LOOP FLIPPED, IF SO FLIP BACK. we keep it flipped, its ok,
if eloop1.closed or eloop2.closed:
angleBetweenLoopNormals = AngleBetweenVecs(eloop1.normal, eloop2.normal)
if angleBetweenLoopNormals > 90:
eloop2.reverse()
DIR= eloop1.centre - eloop2.centre
# if eloop2.closed:
bestEloopDist = BIG_NUM
bestOffset = 0
# Loop rotation offset to test.1
eLoopIdxs = range(len(eloop1.edges))
for offset in xrange(len(eloop1.edges)):
totEloopDist = 0 # Measure this total distance for thsi loop.
offsetIndexLs = eLoopIdxs[offset:] + eLoopIdxs[:offset] # Make offset index list
# e1Idx is always from 0uu to N, e2Idx is offset.
for e1Idx, e2Idx in enumerate(offsetIndexLs):
e1= eloop1.edges[e1Idx]
e2= eloop2.edges[e2Idx]
# Include fan connections in the measurement.
OK= True
while OK or e1.removed:
OK= False
# Measure the vloop distance ===============
diff= ((e1.cent - e2.cent).length) #/ nangle1
ed_dir= e1.cent-e2.cent
a_diff= AngleBetweenVecs(DIR, ed_dir)/18 # 0 t0 18
totEloopDist += (diff * (1+a_diff)) / (1+loopDist)
# Premeture break if where no better off
if totEloopDist > bestEloopDist:
break
e1=e1.next
if totEloopDist < bestEloopDist:
bestOffset = offset
bestEloopDist = totEloopDist
# Modify V2 LS for Best offset
eloop2.edges = eloop2.edges[bestOffset:] + eloop2.edges[:bestOffset]
else:
# Both are open loops, easier to calculate.
# Make sure the fake edges are at the start.
for i, edloop in enumerate((eloop1, eloop2)):
# print "LOOPO"
if edloop.edges[0].fake:
# alredy at the start
#print "A"
pass
elif edloop.edges[-1].fake:
# put the end at the start
edloop.edges.insert(0, edloop.edges.pop())
#print "B"
else:
for j, ed in enumerate(edloop.edges):
if ed.fake:
#print "C"
edloop.edges = edloop.edges = edloop.edges[j:] + edloop.edges[:j]
break
# print "DONE"
ed1, ed2 = eloop1.edges[0], eloop2.edges[0]
if not ed1.fake or not ed2.fake:
raise "Error"
# Find the join that isnt flipped (juts like detecting a bow-tie face)
a1 = (ed1.co1 - ed2.co1).length + (ed1.co2 - ed2.co2).length
a2 = (ed1.co1 - ed2.co2).length + (ed1.co2 - ed2.co1).length
if a1 > a2:
eloop2.reverse()
# make the first edge the start edge still
eloop2.edges.insert(0, eloop2.edges.pop())
for loopIdx in xrange(len(eloop2.edges)):
e1 = eloop1.edges[loopIdx]
e2 = eloop2.edges[loopIdx]
# Remember the pairs for fan filling culled edges.
e1.match = e2; e2.match = e1
if not (e1.fake or e2.fake):
new_faces.append([e1.v1, e1.v2, e2.v2, e2.v1])
# FAN FILL MISSING FACES.
if CULL_FACES:
# Culled edges will be in eloop1.
FAN_FILLED_FACES = 0
contextEdge = eloop1.edges[0] # The larger of teh 2
while FAN_FILLED_FACES < CULL_FACES:
while contextEdge.next.removed == 0:
contextEdge = contextEdge.next
vertFanPivot = contextEdge.match.v2
while contextEdge.next.removed == 1:
#if not contextEdge.next.fake:
new_faces.append([contextEdge.next.v1, contextEdge.next.v2, vertFanPivot])
# Should we use another var?, this will work for now.
contextEdge.next.removed = 1
contextEdge = contextEdge.next
FAN_FILLED_FACES += 1
# may need to fan fill backwards 1 for non closed loops.
eloop1.restore() # Add culled back into the list.
return new_faces
def main():
global CULL_METHOD
is_editmode = Window.EditMode()
if is_editmode: Window.EditMode(0)
ob = bpy.data.scenes.active.objects.active
if ob == None or ob.type != 'Mesh':
BPyMessages.Error_NoMeshActive()
return
me = ob.getData(mesh=1)
if me.multires:
BPyMessages.Error_NoMeshMultiresEdit()
return
time1 = Blender.sys.time()
selEdges = getSelectedEdges(me, ob)
vertLoops = getVertLoops(selEdges, me) # list of lists of edges.
if vertLoops == None:
PupMenu('Error%t|Selection includes verts that are a part of more then 1 loop')
if is_editmode: Window.EditMode(1)
return
# print len(vertLoops)
if len(vertLoops) > 2:
choice = PupMenu('Loft '+str(len(vertLoops))+' edge loops%t|loop|segment')
if choice == -1:
if is_editmode: Window.EditMode(1)
return
elif len(vertLoops) < 2:
PupMenu('Error%t|No Vertloops found!')
if is_editmode: Window.EditMode(1)
return
else:
choice = 2
# The line below checks if any of the vert loops are differenyt in length.
if False in [len(v[0]) == len(vertLoops[0][0]) for v in vertLoops]:
CULL_METHOD = PupMenu('Small to large edge loop distrobution method%t|remove edges evenly|remove smallest edges')
if CULL_METHOD == -1:
if is_editmode: Window.EditMode(1)
return
if CULL_METHOD ==1: # RESET CULL_METHOD
CULL_METHOD = 0 # shortest
else:
CULL_METHOD = 1 # even
time1 = Blender.sys.time()
# Convert to special edge data.
edgeLoops = []
for vloop, closed in vertLoops:
edgeLoops.append(edgeLoop(vloop, me, closed))
# VERT LOOP ORDERING CODE
# "Build a worm" list - grow from Both ends
edgeOrderedList = [edgeLoops.pop()]
# Find the closest.
bestSoFar = BIG_NUM
bestIdxSoFar = None
for edLoopIdx, edLoop in enumerate(edgeLoops):
l =(edgeOrderedList[-1].centre - edLoop.centre).length
if l < bestSoFar:
bestIdxSoFar = edLoopIdx
bestSoFar = l
edgeOrderedList.append( edgeLoops.pop(bestIdxSoFar) )
# Now we have the 2 closest, append to either end-
# Find the closest.
while edgeLoops:
bestSoFar = BIG_NUM
bestIdxSoFar = None
first_or_last = 0 # Zero is first
for edLoopIdx, edLoop in enumerate(edgeLoops):
l1 =(edgeOrderedList[-1].centre - edLoop.centre).length
if l1 < bestSoFar:
bestIdxSoFar = edLoopIdx
bestSoFar = l1
first_or_last = 1 # last
l2 =(edgeOrderedList[0].centre - edLoop.centre).length
if l2 < bestSoFar:
bestIdxSoFar = edLoopIdx
bestSoFar = l2
first_or_last = 0 # last
if first_or_last: # add closest Last
edgeOrderedList.append( edgeLoops.pop(bestIdxSoFar) )
else: # Add closest First
edgeOrderedList.insert(0, edgeLoops.pop(bestIdxSoFar) ) # First
faces = []
for i in xrange(len(edgeOrderedList)-1):
faces.extend( skin2EdgeLoops(edgeOrderedList[i], edgeOrderedList[i+1], me, ob, 0) )
if choice == 1 and len(edgeOrderedList) > 2: # Loop
faces.extend( skin2EdgeLoops(edgeOrderedList[0], edgeOrderedList[-1], me, ob, 0) )
# REMOVE SELECTED FACES.
MESH_MODE= Blender.Mesh.Mode()
if MESH_MODE & Blender.Mesh.SelectModes.EDGE or MESH_MODE & Blender.Mesh.SelectModes.VERTEX: pass
elif MESH_MODE & Blender.Mesh.SelectModes.FACE:
try: me.faces.delete(1, [ f for f in me.faces if f.sel ])
except: pass
me.faces.extend(faces, smooth = True)
print '\nSkin done in %.4f sec.' % (Blender.sys.time()-time1)
if is_editmode: Window.EditMode(1)
if __name__ == '__main__':
main()