Blender-ZeroEngine-MSH2-Plugin/src_research_readme/blender_2.43_scripts/vrml97_export.py

1301 lines
40 KiB
Python

#!BPY
""" Registration info for Blender menus:
Name: 'VRML97 (.wrl)...'
Blender: 241
Group: 'Export'
Tooltip: 'Export to VRML97 file (.wrl)'
"""
__author__ = ("Rick Kimball", "Ken Miller", "Steve Matthews", "Bart")
__url__ = ["blender", "blenderartists.org",
"Author's (Rick) homepage, http://kimballsoftware.com/blender",
"Author's (Bart) homepage, http://www.neeneenee.de/vrml"]
__email__ = ["Bart, bart:neeneenee*de"]
__version__ = "2006/01/17"
__bpydoc__ = """\
This script exports to VRML97 format.
Usage:
Run this script from "File->Export" menu. A pop-up will ask whether you
want to export only selected or all relevant objects.
"""
# $Id: vrml97_export.py 17084 2008-10-14 23:43:08Z campbellbarton $
#
#------------------------------------------------------------------------
# VRML97 exporter for blender 2.36 or above
#
# ***** BEGIN GPL LICENSE BLOCK *****
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# ***** END GPL LICENCE BLOCK *****
#
####################################
# Library dependancies
####################################
import Blender
from Blender import Object, Mesh, Lamp, Draw, BGL, \
Image, Text, sys, Mathutils, Registry
from Blender.Scene import Render
import math
####################################
# Global Variables
####################################
scene = Blender.Scene.getCurrent()
world = Blender.World.GetCurrent()
worldmat = Blender.Texture.Get()
filename = Blender.Get('filename')
_safeOverwrite = True
extension = ''
# Matrices below are used only when export_rotate_z_to_y.val:
#
# Blender is Z up, VRML is Y up, both are right hand coordinate
# systems, so to go from Blender coords to VRML coords we rotate
# by 90 degrees around the X axis. In matrix notation, we have a
# matrix, and it's inverse, as:
M_blen2vrml = Mathutils.Matrix([1,0,0,0], \
[0,0,1,0], \
[0,-1,0,0], \
[0,0,0,1])
M_vrml2blen = Mathutils.Matrix([1,0,0,0], \
[0,0,-1,0], \
[0,1,0,0], \
[0,0,0,1])
class DrawTypes:
"""Object DrawTypes enum values
BOUNDS - draw only the bounding box of the object
WIRE - draw object as a wire frame
SOLID - draw object with flat shading
SHADED - draw object with OpenGL shading
"""
BOUNDBOX = 1
WIRE = 2
SOLID = 3
SHADED = 4
TEXTURE = 5
if not hasattr(Blender.Object,'DrawTypes'):
Blender.Object.DrawTypes = DrawTypes()
##########################################################
# Functions for writing output file
##########################################################
class VRML2Export:
def __init__(self, filename):
#--- public you can change these ---
self.wire = 0
self.proto = 1
self.facecolors = 0
self.vcolors = 0
self.billnode = 0
self.halonode = 0
self.collnode = 0
self.tilenode = 0
self.wire = 0
self.twosided = 0
# level of verbosity in console 0-none, 1-some, 2-most
try:
rt = Blender.Get('rt')
if (rt == 42):
self.verbose = 1
elif (rt == 43):
self.verbose = 2
else:
self.verbose = 0
except:
self.verbose = 0
# decimals for material color values 0.000 - 1.000
self.cp=7
# decimals for vertex coordinate values 0.000 - n.000
self.vp=7
# decimals for texture coordinate values 0.000 - 1.000
self.tp=7
#--- class private don't touch ---
self.texNames={} # dictionary of textureNames
self.matNames={} # dictionary of materialNames
self.meshNames={} # dictionary of meshNames
self.coordNames={} # dictionary of coordNames
self.indentLevel=0 # keeps track of current indenting
self.filename=filename
self.file = open(filename, "w")
self.bNav=0
self.nodeID=0
self.namesReserved=[ "Anchor", "Appearance", "AudioClip",
"Background","Billboard", "Box",
"Collision", "Color", "ColorInterpolator",
"Cone", "Coordinate",
"CoordinateInterpolator", "Cylinder",
"CylinderSensor",
"DirectionalLight",
"ElevationGrid", "Extrustion",
"Fog", "FontStyle", "Group",
"ImageTexture", "IndexedFaceSet",
"IndexedLineSet", "Inline",
"LOD", "Material", "MovieTexture",
"NavigationInfo", "Normal",
"NormalInterpolator",
"OrientationInterpolator", "PixelTexture",
"PlaneSensor", "PointLight", "PointSet",
"PositionInterpolator", "ProxmimitySensor",
"ScalarInterpolator", "Script", "Shape",
"Sound", "Sphere", "SphereSensor",
"SpotLight", "Switch", "Text",
"TextureCoordinate", "TextureTransform",
"TimeSensor", "TouchSensor", "Transform",
"Viewpoint", "VisibilitySensor", "WorldInfo" ]
self.namesStandard=[ "Empty", "Empty.000", "Empty.001",
"Empty.002", "Empty.003", "Empty.004",
"Empty.005", "Empty.006", "Empty.007",
"Empty.008", "Empty.009", "Empty.010",
"Empty.011", "Empty.012",
"Scene.001", "Scene.002", "Scene.003",
"Scene.004", "Scene.005", "Scene.06",
"Scene.013", "Scene.006", "Scene.007",
"Scene.008", "Scene.009", "Scene.010",
"Scene.011","Scene.012",
"World", "World.000", "World.001",
"World.002", "World.003", "World.004",
"World.005" ]
self.namesFog=[ "", "LINEAR"," EXPONENTIAL", "" ]
##########################################################
# Writing nodes routines
##########################################################
def writeHeader(self):
bfile = sys.expandpath(Blender.Get('filename'))
self.file.write("#VRML V2.0 utf8\n\n")
self.file.write("# This file was authored with Blender " \
"(http://www.blender.org/)\n")
self.file.write("# Blender version %s\n" % Blender.Get('version'))
self.file.write("# Blender file %s\n" % sys.basename(bfile))
self.file.write("# Exported using VRML97 exporter " \
"v1.55 (2006/01/17)\n\n")
def writeInline(self):
inlines = Blender.Scene.Get()
allinlines = len(inlines)
if scene != inlines[0]:
return
else:
for i in xrange(allinlines):
nameinline=inlines[i].getName()
if (nameinline not in self.namesStandard) and (i > 0):
self.writeIndented("DEF %s Inline {\n" % \
(self.cleanStr(nameinline)), 1)
nameinline = nameinline+".wrl"
self.writeIndented("url \"%s\" \n" % nameinline)
self.writeIndented("}\n", -1)
self.writeIndented("\n")
def writeScript(self):
textEditor = Blender.Text.Get()
alltext = len(textEditor)
for i in xrange(alltext):
nametext = textEditor[i].getName()
nlines = textEditor[i].getNLines()
if (self.proto == 1):
if (nametext == "proto" or nametext == "proto.js" or \
nametext == "proto.txt") and (nlines != None):
nalllines = len(textEditor[i].asLines())
alllines = textEditor[i].asLines()
for j in xrange(nalllines):
self.writeIndented(alllines[j] + "\n")
elif (self.proto == 0):
if (nametext == "route" or nametext == "route.js" or \
nametext == "route.txt") and (nlines != None):
nalllines = len(textEditor[i].asLines())
alllines = textEditor[i].asLines()
for j in xrange(nalllines):
self.writeIndented(alllines[j] + "\n")
self.writeIndented("\n")
def writeViewpoint(self, thisObj):
# NOTE: The transform node above this will take care of
# the position and orientation of the camera
context = scene.getRenderingContext()
ratio = float(context.imageSizeY()) / float(context.imageSizeX())
temp = ratio * 16 / thisObj.data.getLens()
lens = 2 * math.atan(temp)
lens = min(lens, math.pi)
self.writeIndented("DEF %s Viewpoint {\n" % \
(self.cleanStr(thisObj.name)), 1)
self.writeIndented('description "%s" \n' % thisObj.name)
self.writeIndented("position 0.0 0.0 0.0\n")
# Need camera to point to -y in local space to accomodate
# the transforma node above
self.writeIndented("orientation 1.0 0.0 0.0 %f\n" % (-math.pi/2.0))
self.writeIndented("fieldOfView %.3f\n" % (lens))
self.writeIndented("}\n", -1)
self.writeIndented("\n")
def writeFog(self):
if world:
mtype = world.getMistype()
mparam = world.getMist()
grd = world.getHor()
grd0, grd1, grd2 = grd[0], grd[1], grd[2]
else:
return
if (mtype == 1 or mtype == 2):
self.writeIndented("Fog {\n",1)
self.writeIndented('fogType "%s"\n' % self.namesFog[mtype])
self.writeIndented("color %s %s %s\n" % \
(round(grd0,self.cp), \
round(grd1,self.cp), \
round(grd2,self.cp)))
self.writeIndented("visibilityRange %s\n" % \
round(mparam[2],self.cp))
self.writeIndented("}\n",-1)
self.writeIndented("\n")
else:
return
def writeNavigationInfo(self, scene):
allObj = []
allObj = list(scene.objects)
headlight = "TRUE"
vislimit = 0.0
for thisObj in allObj:
objType=thisObj.type
if objType == "Camera":
vislimit = thisObj.data.getClipEnd()
elif objType == "Lamp":
headlight = "FALSE"
self.writeIndented("NavigationInfo {\n",1)
self.writeIndented("headlight %s\n" % headlight)
self.writeIndented("visibilityLimit %s\n" % \
(round(vislimit,self.cp)))
self.writeIndented("type [\"EXAMINE\", \"ANY\"]\n")
self.writeIndented("avatarSize [0.25, 1.75, 0.75]\n")
self.writeIndented("} \n",-1)
self.writeIndented(" \n")
def writeSpotLight(self, object, lamp):
# Note: location and orientation are handled by the
# transform node above this object
if world:
ambi = world.getAmb()
ambientIntensity = ((float(ambi[0] + ambi[1] + ambi[2]))/3)/2.5
else:
ambi = 0
ambientIntensity = 0
# compute cutoff and beamwidth
intensity=min(lamp.energy/1.75,1.0)
beamWidth=((lamp.spotSize*math.pi)/180.0)*.37;
cutOffAngle=beamWidth*1.3
radius = lamp.dist*math.cos(beamWidth)
self.writeIndented("DEF %s SpotLight {\n" % \
self.cleanStr(object.name),1)
self.writeIndented("radius %s\n" % (round(radius,self.cp)))
self.writeIndented("ambientIntensity %s\n" % \
(round(ambientIntensity,self.cp)))
self.writeIndented("intensity %s\n" % (round(intensity,self.cp)))
self.writeIndented("color %s %s %s\n" % \
(round(lamp.col[0],self.cp), \
round(lamp.col[1],self.cp), \
round(lamp.col[2],self.cp)))
self.writeIndented("beamWidth %s\n" % (round(beamWidth,self.cp)))
self.writeIndented("cutOffAngle %s\n" % \
(round(cutOffAngle,self.cp)))
# Note: point down -Y axis, transform node above will rotate
self.writeIndented("direction 0.0 -1.0 0.0\n")
self.writeIndented("location 0.0 0.0 0.0\n")
self.writeIndented("}\n",-1)
self.writeIndented("\n")
def writeDirectionalLight(self, object, lamp):
# Note: location and orientation are handled by the
# transform node above this object
if world:
ambi = world.getAmb()
ambientIntensity = ((float(ambi[0] + ambi[1] + ambi[2]))/3)/2.5
else:
ambi = 0
ambientIntensity = 0
intensity=min(lamp.energy/1.75,1.0)
self.writeIndented("DEF %s DirectionalLight {\n" % \
self.cleanStr(object.name),1)
self.writeIndented("ambientIntensity %s\n" % \
(round(ambientIntensity,self.cp)))
self.writeIndented("color %s %s %s\n" % \
(round(lamp.col[0],self.cp), \
round(lamp.col[1],self.cp), \
round(lamp.col[2],self.cp)))
self.writeIndented("intensity %s\n" % \
(round(intensity,self.cp)))
# Note: point down -Y axis, transform node above will rotate
self.writeIndented("direction 0.0 -1.0 0.0\n")
self.writeIndented("}\n",-1)
self.writeIndented("\n")
def writePointLight(self, object, lamp):
# Note: location is at origin because parent transform node
# takes care of this
if world:
ambi = world.getAmb()
ambientIntensity = ((float(ambi[0] + ambi[1] + ambi[2]))/3)/2.5
else:
ambi = 0
ambientIntensity = 0
om = object.getMatrix()
intensity=min(lamp.energy/1.75,1.0)
radius = lamp.dist
self.writeIndented("DEF %s PointLight {\n" % \
self.cleanStr(object.name),1)
self.writeIndented("ambientIntensity %s\n" % \
(round(ambientIntensity,self.cp)))
self.writeIndented("color %s %s %s\n" % \
(round(lamp.col[0],self.cp), \
round(lamp.col[1],self.cp), \
round(lamp.col[2],self.cp)))
self.writeIndented("intensity %s\n" % (round(intensity,self.cp)))
self.writeIndented("location 0.0 0.0 0.0\n")
self.writeIndented("radius %s\n" % radius )
self.writeIndented("}\n",-1)
self.writeIndented("\n")
def writeNode(self, thisObj):
# Note: location and orientation are handled by the
# transform node above this object
objectname=str(thisObj.getName())
if objectname in self.namesStandard:
return
else:
self.writeIndented("%s {\n" % objectname,1)
# May need to check that the direction is done right
self.writeIndented("direction 0.0 -1.0 0.0\n")
self.writeIndented("location 0.0 0.0 0.0\n")
self.writeIndented("}\n",-1)
self.writeIndented("\n")
def secureName(self, name):
name = name + str(self.nodeID)
self.nodeID += 1
if len(name) <= 3:
newname = "_" + str(self.nodeID)
return "%s" % (newname)
else:
for bad in ['"','#',"'",',','.','[','\\',']','{','}']:
name=name.replace(bad,'_')
if name in self.namesReserved:
newname = name[0:3] + "_" + str(self.nodeID)
return "%s" % (newname)
elif name[0].isdigit():
newname = "_" + name + str(self.nodeID)
return "%s" % (newname)
else:
newname = name
return "%s" % (newname)
def classifyMesh(self, me, ob):
self.halonode = 0
self.billnode = 0
self.facecolors = 0
self.vcolors = 0
self.tilenode = 0
self.colnode = 0
self.wire = 0
if me.faceUV:
for face in me.faces:
if (face.mode & Mesh.FaceModes['HALO']):
self.halonode = 1
if (face.mode & Mesh.FaceModes['BILLBOARD']):
self.billnode = 1
if (face.mode & Mesh.FaceModes['OBCOL']):
self.facecolors = 1
if (face.mode & Mesh.FaceModes['SHAREDCOL']):
self.vcolors = 1
if (face.mode & Mesh.FaceModes['TILES']):
self.tilenode = 1
if not (face.mode & Mesh.FaceModes['DYNAMIC']):
self.collnode = 1
if (face.mode & Mesh.FaceModes['TWOSIDE']):
self.twosided = 1
# Bit of a crufty trick, but if mesh has vertex colors
# (as a non-face property) and if first material has
# vcol paint set, we export the vertex colors
if (me.vertexColors):
if len(me.materials) > 0:
mat = me.materials[0]
if mat:
if (mat.mode & Blender.Material.Modes['VCOL_PAINT']):
self.vcolors = 1
else:
self.vcolors = 0
# check if object is wireframe only
if ob.drawType == Blender.Object.DrawTypes.WIRE:
# user selected WIRE=2 on the Drawtype=Wire on (F9) Edit page
self.wire = 1
###
### The next few functions nest Collision/Billboard/Halo nodes.
### For real mesh data export, jump down to writeMeshData()
###
def writeMesh(self, ob, normals = 0):
imageMap={} # set of used images
sided={} # 'one':cnt , 'two':cnt
vColors={} # 'multi':1
if (len(ob.modifiers) > 0):
me = Mesh.New()
me.getFromObject(ob.name)
# Careful with the name, the temporary mesh may
# reuse the default name for other meshes. So we
# pick our own name.
me.name = "MOD_%s" % (ob.name)
else:
me = ob.getData(mesh = 1)
self.classifyMesh(me, ob)
if (self.collnode):
self.writeCollisionMesh(me, ob, normals)
return
else:
self.writeRegularMesh(me, ob, normals)
return
def writeCollisionMesh(self, me, ob, normals = 0):
self.writeIndented("Collision {\n",1)
self.writeIndented("collide FALSE\n")
self.writeIndented("children [\n")
self.writeRegularMesh(me, ob, normals)
self.writeIndented("]\n", -1)
self.writeIndented("}\n", -1)
def writeRegularMesh(self, me, ob, normals = 0):
if (self.billnode):
self.writeBillboardMesh(me, ob, normals)
elif (self.halonode):
self.writeHaloMesh(me, ob, normals)
else:
self.writeMeshData(me, ob, normals)
def writeBillboardMesh(self, me, ob, normals = 0):
self.writeIndented("Billboard {\n",1)
self.writeIndented("axisOfRotation 0 1 0\n")
self.writeIndented("children [\n")
self.writeMeshData(me, ob, normals)
self.writeIndented("]\n", -1)
self.writeIndented("}\n", -1)
def writeHaloMesh(self, me, ob, normals = 0):
self.writeIndented("Billboard {\n",1)
self.writeIndented("axisOfRotation 0 0 0\n")
self.writeIndented("children [\n")
self.writeMeshData(me, ob, normals)
self.writeIndented("]\n", -1)
self.writeIndented("}\n", -1)
###
### Here is where real mesh data is written
###
def writeMeshData(self, me, ob, normals = 0):
meshName = self.cleanStr(me.name)
if self.meshNames.has_key(meshName):
self.writeIndented("USE ME_%s\n" % meshName, 0)
self.meshNames[meshName]+=1
if (self.verbose == 1):
print " Using Mesh %s (Blender mesh: %s)\n" % \
(meshName, me.name)
return
self.meshNames[meshName]=1
if (self.verbose == 1):
print " Writing Mesh %s (Blender mesh: %s)\n" % \
(meshName, me.name)
return
self.writeIndented("DEF ME_%s Group {\n" % meshName,1)
self.writeIndented("children [\n", 1)
hasImageTexture = 0
issmooth = 0
maters = me.materials
nummats = len(me.materials)
# Vertex and Face colors trump materials and image textures
if (self.facecolors or self.vcolors):
if nummats > 0:
self.writeShape(ob, me, 0, None)
else:
self.writeShape(ob, me, -1, None)
# Do meshes with materials, possibly with image textures
elif nummats > 0:
for matnum in xrange(len(maters)):
images = []
if me.faceUV:
images = self.getImages(me, matnum)
if len(images) > 0:
for image in images:
self.writeShape(ob, me, matnum, image)
else:
self.writeShape(ob, me, matnum, None)
else:
self.writeShape(ob, me, matnum, None)
else:
if me.faceUV:
images = self.getImages(me, -1)
if len(images) > 0:
for image in images:
self.writeShape(ob, me, -1, image)
else:
self.writeShape(ob, me, -1, None)
else:
self.writeShape(ob, me, -1, None)
self.writeIndented("]\n", -1)
self.writeIndented("}\n", -1)
def getImages(self, me, matnum):
imageNames = {}
images = []
for face in me.faces:
if (matnum == -1) or (face.mat == matnum):
if (face.image):
imName = self.cleanStr(face.image.name)
if not imageNames.has_key(imName):
images.append(face.image)
imageNames[imName]=1
return images
def writeCoordinates(self, me, meshName):
coordName = "coord_%s" % (meshName)
# look up coord name, use it if available
if self.coordNames.has_key(coordName):
self.writeIndented("coord USE %s\n" % coordName, 0)
self.coordNames[coordName]+=1
return;
self.coordNames[coordName]=1
#-- vertices
self.writeIndented("coord DEF %s Coordinate {\n" % (coordName), 1)
self.writeIndented("point [\n", 1)
meshVertexList = me.verts
for vertex in meshVertexList:
vrmlvert = blenvert = Mathutils.Vector(vertex.co)
if export_rotate_z_to_y.val:
vrmlvert = M_blen2vrml * vrmlvert
self.writeUnindented("%s %s %s\n " % \
(vrmlvert[0], \
vrmlvert[1], \
vrmlvert[2]))
self.writeIndented("]\n", -1)
self.writeIndented("}\n", -1)
self.writeIndented("\n")
def testShape(self, ob, me, matnum, image):
if ( (matnum == -1) and (image == None) ):
if ( len(me.faces) > 0 ):
return True
# Check if any faces the material or image
for face in me.faces:
if (matnum == -1):
if (face.image == image):
return True
elif (image == None):
if (face.mat == matnum):
return True
else:
if ((face.image == image) and (face.mat == matnum)):
return True
return False
def writeShape(self, ob, me, matnum, image):
# matnum == -1 means don't check the face.mat
# image == None means don't check face.image
if ( not self.testShape(ob, me, matnum, image) ):
return False
self.writeIndented("Shape {\n",1)
self.writeIndented("appearance Appearance {\n", 1)
if (matnum != -1):
mater = me.materials[matnum]
if (mater):
self.writeMaterial(mater, self.cleanStr(mater.name,''))
if (mater.mode & Blender.Material.Modes['TEXFACE']):
if image != None:
self.writeImageTexture(image.name, image.filename)
else:
self.writeDefaultMaterial()
else:
if image != None:
self.writeImageTexture(image.name, image.filename)
self.writeIndented("}\n", -1)
self.writeGeometry(ob, me, matnum, image)
self.writeIndented("}\n", -1)
return True
def writeGeometry(self, ob, me, matnum, image):
#-- IndexedFaceSet or IndexedLineSet
meshName = self.cleanStr(me.name)
# check if object is wireframe only
if (self.wire):
ifStyle="IndexedLineSet"
else:
# user selected BOUNDS=1, SOLID=3, SHARED=4, or TEXTURE=5
ifStyle="IndexedFaceSet"
self.writeIndented("geometry %s {\n" % ifStyle, 1)
if not self.wire:
if self.twosided == 1:
self.writeIndented("solid FALSE\n")
else:
self.writeIndented("solid TRUE\n")
self.writeCoordinates(me, meshName)
self.writeCoordIndex(me, meshName, matnum, image)
self.writeTextureCoordinates(me, meshName, matnum, image)
if self.facecolors:
self.writeFaceColors(me)
elif self.vcolors:
self.writeVertexColors(me)
self.writeIndented("}\n", -1)
def writeCoordIndex(self, me, meshName, matnum, image):
meshVertexList = me.verts
self.writeIndented("coordIndex [\n", 1)
coordIndexList=[]
for face in me.faces:
if (matnum == -1) or (face.mat == matnum):
if (image == None) or (face.image == image):
cordStr=""
for v in face.verts:
indx=v.index
cordStr = cordStr + "%s " % indx
self.writeUnindented(cordStr + "-1, \n")
self.writeIndented("]\n", -1)
def writeTextureCoordinates(self, me, meshName, matnum, image):
if (image == None):
return
texCoordList=[]
texIndexList=[]
j=0
for face in me.faces:
coordStr = ""
indexStr = ""
if (matnum == -1) or (face.mat == matnum):
if (face.image == image):
for i in xrange(len(face.verts)):
uv = face.uv[i]
indexStr += "%s " % (j)
coordStr += "%s %s, " % \
(round(uv[0], self.tp), \
round(uv[1], self.tp))
j=j+1
indexStr += "-1"
texIndexList.append(indexStr)
texCoordList.append(coordStr)
self.writeIndented("texCoord TextureCoordinate {\n", 1)
self.writeIndented("point [\n", 1)
for coord in texCoordList:
self.writeUnindented("%s\n" % (coord))
self.writeIndented("]\n", -1)
self.writeIndented("}\n", -1)
self.writeIndented("texCoordIndex [\n", 1)
for ind in texIndexList:
self.writeUnindented("%s\n" % (ind))
self.writeIndented("]\n", -1)
def writeFaceColors(self, me):
self.writeIndented("colorPerVertex FALSE\n")
self.writeIndented("color Color {\n",1)
self.writeIndented("color [\n", 1)
for face in me.faces:
if face.col:
c=face.col[0]
if self.verbose >= 2:
print "Debug: face.col r=%d g=%d b=%d" % (c.r, c.g, c.b)
aColor = self.rgbToFS(c)
self.writeUnindented("%s,\n" % aColor)
self.writeIndented("]\n",-1)
self.writeIndented("}\n",-1)
def writeVertexColors(self, me):
self.writeIndented("colorPerVertex TRUE\n")
self.writeIndented("color Color {\n",1)
self.writeIndented("color [\n\t\t\t\t\t\t", 1)
cols = [None] * len(me.verts)
for face in me.faces:
for vind in xrange(len(face.v)):
vertex = face.v[vind]
i = vertex.index
if cols[i] == None:
cols[i] = face.col[vind]
for i in xrange(len(me.verts)):
aColor = self.rgbToFS(cols[i])
self.writeUnindented("%s\n" % aColor)
self.writeIndented("\n", 0)
self.writeIndented("]\n",-1)
self.writeIndented("}\n",-1)
def writeDefaultMaterial(self):
matName = "default"
# look up material name, use it if available
if self.matNames.has_key(matName):
self.writeIndented("material USE MA_%s\n" % matName)
self.matNames[matName]+=1
return;
self.matNames[matName]=1
self.writeIndented("material DEF MA_%s Material {\n" % matName, 1)
self.writeIndented("diffuseColor 0.8 0.8 0.8\n")
self.writeIndented("specularColor 1.0 1.0 1.0\n")
self.writeIndented("shininess 0.5\n")
self.writeIndented("transparency 0.0\n")
self.writeIndented("}\n",-1)
def writeMaterial(self, mat, matName):
# look up material name, use it if available
if self.matNames.has_key(matName):
self.writeIndented("material USE MA_%s\n" % matName)
self.matNames[matName]+=1
return;
self.matNames[matName]=1
ambient = mat.amb/3
diffuseR, diffuseG, diffuseB = \
mat.rgbCol[0], mat.rgbCol[1],mat.rgbCol[2]
if world:
ambi = world.getAmb()
ambi0, ambi1, ambi2 = (ambi[0]*mat.amb) * 2, \
(ambi[1]*mat.amb) * 2, \
(ambi[2]*mat.amb) * 2
else:
ambi0, ambi1, ambi2 = 0, 0, 0
emisR, emisG, emisB = (diffuseR*mat.emit+ambi0) / 2, \
(diffuseG*mat.emit+ambi1) / 2, \
(diffuseB*mat.emit+ambi2) / 2
shininess = mat.hard/512.0
specR = (mat.specCol[0]+0.001) / (1.25/(mat.getSpec()+0.001))
specG = (mat.specCol[1]+0.001) / (1.25/(mat.getSpec()+0.001))
specB = (mat.specCol[2]+0.001) / (1.25/(mat.getSpec()+0.001))
transp = 1 - mat.alpha
matFlags = mat.getMode()
if matFlags & Blender.Material.Modes['SHADELESS']:
ambient = 1
shine = 1
specR = emitR = diffuseR
specG = emitG = diffuseG
specB = emitB = diffuseB
self.writeIndented("material DEF MA_%s Material {\n" % matName, 1)
self.writeIndented("diffuseColor %s %s %s\n" % \
(round(diffuseR,self.cp), \
round(diffuseG,self.cp), \
round(diffuseB,self.cp)))
self.writeIndented("ambientIntensity %s\n" % \
(round(ambient,self.cp)))
self.writeIndented("specularColor %s %s %s\n" % \
(round(specR,self.cp), \
round(specG,self.cp), \
round(specB,self.cp)))
self.writeIndented("emissiveColor %s %s %s\n" % \
(round(emisR,self.cp), \
round(emisG,self.cp), \
round(emisB,self.cp)))
self.writeIndented("shininess %s\n" % (round(shininess,self.cp)))
self.writeIndented("transparency %s\n" % (round(transp,self.cp)))
self.writeIndented("}\n",-1)
def writeImageTexture(self, name, filename):
if self.texNames.has_key(name):
self.writeIndented("texture USE %s\n" % self.cleanStr(name))
self.texNames[name] += 1
return
else:
self.writeIndented("texture DEF %s ImageTexture {\n" % \
self.cleanStr(name), 1)
self.writeIndented('url "%s"\n' % \
filename.split("\\")[-1].split("/")[-1])
self.writeIndented("}\n",-1)
self.texNames[name] = 1
def writeBackground(self):
if world:
worldname = world.getName()
else:
return
blending = world.getSkytype()
grd = world.getHor()
grd0, grd1, grd2 = grd[0], grd[1], grd[2]
sky = world.getZen()
sky0, sky1, sky2 = sky[0], sky[1], sky[2]
mix0, mix1, mix2 = grd[0]+sky[0], grd[1]+sky[1], grd[2]+sky[2]
mix0, mix1, mix2 = mix0/2, mix1/2, mix2/2
if worldname in self.namesStandard:
self.writeIndented("Background {\n",1)
else:
self.writeIndented("DEF %s Background {\n" % \
self.secureName(worldname),1)
# No Skytype - just Hor color
if blending == 0:
self.writeIndented("groundColor %s %s %s\n" % \
(round(grd0,self.cp), \
round(grd1,self.cp), \
round(grd2,self.cp)))
self.writeIndented("skyColor %s %s %s\n" % \
(round(grd0,self.cp), \
round(grd1,self.cp), \
round(grd2,self.cp)))
# Blend Gradient
elif blending == 1:
self.writeIndented("groundColor [ %s %s %s, " % \
(round(grd0,self.cp), \
round(grd1,self.cp), \
round(grd2,self.cp)))
self.writeIndented("%s %s %s ]\n" % \
(round(mix0,self.cp), \
round(mix1,self.cp), \
round(mix2,self.cp)))
self.writeIndented("groundAngle [ 1.57, 1.57 ]\n")
self.writeIndented("skyColor [ %s %s %s, " % \
(round(sky0,self.cp), \
round(sky1,self.cp), \
round(sky2,self.cp)))
self.writeIndented("%s %s %s ]\n" % \
(round(mix0,self.cp), \
round(mix1,self.cp), \
round(mix2,self.cp)))
self.writeIndented("skyAngle [ 1.57, 1.57 ]\n")
# Blend+Real Gradient Inverse
elif blending == 3:
self.writeIndented("groundColor [ %s %s %s, " % \
(round(sky0,self.cp), \
round(sky1,self.cp), \
round(sky2,self.cp)))
self.writeIndented("%s %s %s ]\n" % \
(round(mix0,self.cp), \
round(mix1,self.cp), \
round(mix2,self.cp)))
self.writeIndented("groundAngle [ 1.57, 1.57 ]\n")
self.writeIndented("skyColor [ %s %s %s, " % \
(round(grd0,self.cp), \
round(grd1,self.cp), \
round(grd2,self.cp)))
self.writeIndented("%s %s %s ]\n" % \
(round(mix0,self.cp), \
round(mix1,self.cp), \
round(mix2,self.cp)))
self.writeIndented("skyAngle [ 1.57, 1.57 ]\n")
# Paper - just Zen Color
elif blending == 4:
self.writeIndented("groundColor %s %s %s\n" % \
(round(sky0,self.cp), \
round(sky1,self.cp), \
round(sky2,self.cp)))
self.writeIndented("skyColor %s %s %s\n" % \
(round(sky0,self.cp), \
round(sky1,self.cp), \
round(sky2,self.cp)))
# Blend+Real+Paper - komplex gradient
elif blending == 7:
self.writeIndented("groundColor [ %s %s %s, " % \
(round(sky0,self.cp), \
round(sky1,self.cp), \
round(sky2,self.cp)))
self.writeIndented("%s %s %s ]\n" % \
(round(grd0,self.cp), \
round(grd1,self.cp), \
round(grd2,self.cp)))
self.writeIndented("groundAngle [ 1.57, 1.57 ]\n")
self.writeIndented("skyColor [ %s %s %s, " % \
(round(sky0,self.cp), \
round(sky1,self.cp), \
round(sky2,self.cp)))
self.writeIndented("%s %s %s ]\n" % \
(round(grd0,self.cp),
round(grd1,self.cp),
round(grd2,self.cp)))
self.writeIndented("skyAngle [ 1.57, 1.57 ]\n")
# Any Other two colors
else:
self.writeIndented("groundColor %s %s %s\n" % \
(round(grd0,self.cp), \
round(grd1,self.cp), \
round(grd2,self.cp)))
self.writeIndented("skyColor %s %s %s\n" % \
(round(sky0,self.cp), \
round(sky1,self.cp), \
round(sky2,self.cp)))
alltexture = len(worldmat)
for i in xrange(alltexture):
namemat = worldmat[i].getName()
pic = worldmat[i].getImage()
if pic:
# Stripped path.
pic_path= pic.filename.split('\\')[-1].split('/')[-1]
if namemat == "back":
self.writeIndented('backUrl "%s"\n' % pic_path)
elif namemat == "bottom":
self.writeIndented('bottomUrl "%s"\n' % pic_path)
elif namemat == "front":
self.writeIndented('frontUrl "%s"\n' % pic_path)
elif namemat == "left":
self.writeIndented('leftUrl "%s"\n' % pic_path)
elif namemat == "right":
self.writeIndented('rightUrl "%s"\n' % pic_path)
elif namemat == "top":
self.writeIndented('topUrl "%s"\n' % pic_path)
self.writeIndented("}",-1)
self.writeIndented("\n\n")
def writeLamp(self, ob):
la = ob.data
laType = la.getType()
if laType == Lamp.Types.Lamp:
self.writePointLight(ob, la)
elif laType == Lamp.Types.Spot:
self.writeSpotLight(ob, la)
elif laType == Lamp.Types.Sun:
self.writeDirectionalLight(ob, la)
else:
self.writeDirectionalLight(ob, la)
def writeObject(self, ob):
obname = self.cleanStr(ob.name)
try:
obtype=ob.getType()
except AttributeError:
print "Error: Unable to get type info for %s" % obname
return
if self.verbose >= 1:
print "++ Writing %s object %s (Blender name: %s)\n" % \
(obtype, obname, ob.name)
# Note: I am leaving empties out for now -- the original
# script does some really weird stuff with empties
if ( (obtype != "Camera") and \
(obtype != "Mesh") and \
(obtype != "Lamp") ):
print "Info: Ignoring [%s], object type [%s] " \
"not handle yet" % (obname, obtype)
return
ob_matrix = Mathutils.Matrix(ob.getMatrix('worldspace'))
if export_rotate_z_to_y.val:
matrix = M_blen2vrml * ob_matrix * M_vrml2blen
else:
matrix = ob_matrix
e = matrix.rotationPart().toEuler()
v = matrix.translationPart()
(axis, angle) = self.eulToVecRot(self.deg2rad(e.x), \
self.deg2rad(e.y), \
self.deg2rad(e.z))
mrot = e.toMatrix().resize4x4()
try:
mrot.invert()
except:
print "Warning: %s has degenerate transformation!" % (obname)
return
diag = matrix * mrot
sizeX = diag[0][0]
sizeY = diag[1][1]
sizeZ = diag[2][2]
if self.verbose >= 1:
print " Transformation:\n" \
" loc: %f %f %f\n" \
" size: %f %f %f\n" \
" Rot: (%f %f %f), %f\n" % \
(v.x, v.y, v.z, \
sizeX, sizeY, sizeZ, \
axis[0], axis[1], axis[2], angle)
self.writeIndented("DEF OB_%s Transform {\n" % (obname), 1)
self.writeIndented("translation %f %f %f\n" % \
(v.x, v.y, v.z) )
self.writeIndented("rotation %f %f %f %f\n" % \
(axis[0],axis[1],axis[2],angle) )
self.writeIndented("scale %f %f %f\n" % \
(sizeX, sizeY, sizeZ) )
self.writeIndented("children [\n", 1)
self.writeObData(ob)
self.writeIndented("]\n", -1) # end object
self.writeIndented("}\n", -1) # end object
def writeObData(self, ob):
obtype = ob.getType()
if obtype == "Camera":
self.writeViewpoint(ob)
elif obtype == "Mesh":
self.writeMesh(ob)
elif obtype == "Lamp":
self.writeLamp(ob)
elif obtype == "Empty":
self.writeNode(ob)
##########################################################
# export routine
##########################################################
def export(self, scene, world, worldmat):
print "Info: starting VRML97 export to " + self.filename + "..."
self.writeHeader()
self.writeScript()
self.writeNavigationInfo(scene)
self.writeBackground()
self.writeFog()
self.proto = 0
allObj = []
if export_selection_only.val:
allObj = list(scene.objects.context)
else:
allObj = list(scene.objects)
self.writeInline()
for thisObj in allObj:
self.writeObject(thisObj)
if not export_selection_only.val:
self.writeScript()
self.cleanup()
##########################################################
# Utility methods
##########################################################
def cleanup(self):
self.file.close()
self.texNames={}
self.matNames={}
self.indentLevel=0
print "Info: finished VRML97 export to %s\n" % self.filename
def cleanStr(self, name, prefix='rsvd_'):
"""cleanStr(name,prefix) - try to create a valid VRML DEF \
name from object name"""
newName=name[:]
if len(newName) == 0:
self.nNodeID+=1
return "%s%d" % (prefix, self.nNodeID)
if newName in self.namesReserved:
newName='%s%s' % (prefix,newName)
if newName[0].isdigit():
newName='%s%s' % ('_',newName)
for bad in (' ','"','#',"'",',','.','[','\\',']','{','}'):
newName=newName.replace(bad,'_')
return newName
def rgbToFS(self, c):
s = "%s %s %s" % \
(round(c.r/255.0,self.cp), \
round(c.g/255.0,self.cp), \
round(c.b/255.0,self.cp))
return s
def rad2deg(self, v):
return round(v*180.0/math.pi,4)
def deg2rad(self, v):
return (v*math.pi)/180.0;
def eulToVecRot(self, RotX, RotY, RotZ):
ti = RotX*0.5
tj = RotY*0.5
th = RotZ*0.5
ci = math.cos(ti)
cj = math.cos(tj)
ch = math.cos(th)
si = math.sin(ti)
sj = math.sin(tj)
sh = math.sin(th)
cc = ci*ch
cs = ci*sh
sc = si*ch
ss = si*sh
q0 = cj*cc + sj*ss
q1 = cj*sc - sj*cs
q2 = cj*ss + sj*cc
q3 = cj*cs - sj*sc
angle = 2 * math.acos(q0)
if (math.fabs(angle) < 0.000001):
axis = [1.0, 0.0, 0.0]
else:
sphi = 1.0/math.sqrt(1.0 - (q0*q0))
axis = [q1 * sphi, q2 * sphi, q3 * sphi]
a = Mathutils.Vector(axis)
a.normalize()
return ([a.x, a.y, a.z], angle)
# For writing well formed VRML code
#----------------------------------
def writeIndented(self, s, inc=0):
if inc < 1:
self.indentLevel = self.indentLevel + inc
self.file.write( self.indentLevel*"\t" + s)
if inc > 0:
self.indentLevel = self.indentLevel + inc
# Sometimes better to not have too many
# tab characters in a long list, for file size
#----------------------------------
def writeUnindented(self, s):
self.file.write(s)
##########################################################
# Callbacks, needed before Main
##########################################################
def select_file(filename):
if sys.exists(filename) and _safeOverwrite:
result = \
Draw.PupMenu("File Already Exists, Overwrite?%t|Yes%x1|No%x0")
if(result != 1):
return
if not filename.endswith(extension):
filename += extension
wrlexport=VRML2Export(filename)
wrlexport.export(scene, world, worldmat)
#########################################################
# UI and Registry utilities
#########################################################
export_selection_only = Draw.Create(0)
export_rotate_z_to_y = Draw.Create(1)
export_compressed = Draw.Create(0)
def save_to_registry():
d = {}
d['selection_only'] = export_selection_only.val
d['rotate_z_to_y'] = export_rotate_z_to_y.val
d['compressed'] = export_compressed.val
Registry.SetKey('vrml97_export', d, True)
def load_from_registry():
d = Registry.GetKey('vrml97_export', True)
if d:
try:
export_selection_only.val = d['selection_only']
export_rotate_z_to_y.val = d['rotate_z_to_y']
export_compressed.val = d['compressed']
except: save_to_registry() # If data is not valid, rewrite it.
def show_popup():
pup_block = [
('Selection Only', export_selection_only, 'Only export objects in visible selection. Else export whole scene.'),
('Rotate +Z to +Y', export_rotate_z_to_y, 'Rotate such that +Z axis (Blender up) becomes +Y (VRML up).'),
('Compress', export_compressed, 'Generate a .wrz file (normal VRML compressed by gzip).')
]
return Draw.PupBlock('Export VRML 97...', pup_block)
#########################################################
# main routine
#########################################################
load_from_registry()
# Note that show_popup must be done before Blender.Window.FileSelector,
# because export_compressed affects the suggested extension of resulting
# file.
if show_popup():
save_to_registry()
if export_compressed.val:
extension=".wrz"
from gzip import *
else:
extension=".wrl"
Blender.Window.FileSelector(select_file, "Export VRML97", \
sys.makename(ext=extension))