Blender-ZeroEngine-MSH2-Plugin/src_research_readme/blender_2.43_scripts/bpymodules/BPyMesh.py

1327 lines
35 KiB
Python
Raw Normal View History

# ***** BEGIN GPL LICENSE BLOCK *****
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# ***** END GPL LICENCE BLOCK *****
# --------------------------------------------------------------------------
import Blender
import bpy
import BPyMesh_redux # seperated because of its size.
# reload(BPyMesh_redux)
redux= BPyMesh_redux.redux
# python 2.3 has no reversed() iterator. this will only work on lists and tuples
try:
reversed
except:
def reversed(l): return l[::-1]
# If python version is less than 2.4, try to get set stuff from module
try:
set
except:
try:
from sets import Set as set
except:
set= None
def meshWeight2List(me):
''' Takes a mesh and return its group names and a list of lists, one list per vertex.
aligning the each vert list with the group names, each list contains float value for the weight.
These 2 lists can be modified and then used with list2MeshWeight to apply the changes.
'''
# Clear the vert group.
groupNames= me.getVertGroupNames()
len_groupNames= len(groupNames)
if not len_groupNames:
# no verts? return a vert aligned empty list
return [[] for i in xrange(len(me.verts))], []
else:
vWeightList= [[0.0]*len_groupNames for i in xrange(len(me.verts))]
for group_index, group in enumerate(groupNames):
for vert_index, weight in me.getVertsFromGroup(group, 1): # (i,w) tuples.
vWeightList[vert_index][group_index]= weight
# removed this because me may be copying teh vertex groups.
#for group in groupNames:
# me.removeVertGroup(group)
return groupNames, vWeightList
def list2MeshWeight(me, groupNames, vWeightList):
''' Takes a list of groups and a list of vertex Weight lists as created by meshWeight2List
and applys it to the mesh.'''
if len(vWeightList) != len(me.verts):
raise 'Error, Lists Differ in size, do not modify your mesh.verts before updating the weights'
act_group = me.activeGroup
# Clear the vert group.
currentGroupNames= me.getVertGroupNames()
for group in currentGroupNames:
me.removeVertGroup(group) # messes up the active group.
# Add clean unused vert groupNames back
currentGroupNames= me.getVertGroupNames()
for group in groupNames:
me.addVertGroup(group)
add_ = Blender.Mesh.AssignModes.ADD
vertList= [None]
for i, v in enumerate(me.verts):
vertList[0]= i
for group_index, weight in enumerate(vWeightList[i]):
if weight:
try:
me.assignVertsToGroup(groupNames[group_index], vertList, min(1, max(0, weight)), add_)
except:
pass # vert group is not used anymore.
try: me.activeGroup = act_group
except: pass
me.update()
def meshWeight2Dict(me):
''' Takes a mesh and return its group names and a list of dicts, one dict per vertex.
using the group as a key and a float value for the weight.
These 2 lists can be modified and then used with dict2MeshWeight to apply the changes.
'''
vWeightDict= [dict() for i in xrange(len(me.verts))] # Sync with vertlist.
# Clear the vert group.
groupNames= me.getVertGroupNames()
for group in groupNames:
for vert_index, weight in me.getVertsFromGroup(group, 1): # (i,w) tuples.
vWeightDict[vert_index][group]= weight
# removed this because me may be copying teh vertex groups.
#for group in groupNames:
# me.removeVertGroup(group)
return groupNames, vWeightDict
def dict2MeshWeight(me, groupNames, vWeightDict):
''' Takes a list of groups and a list of vertex Weight dicts as created by meshWeight2Dict
and applys it to the mesh.'''
if len(vWeightDict) != len(me.verts):
raise 'Error, Lists Differ in size, do not modify your mesh.verts before updating the weights'
act_group = me.activeGroup
# Clear the vert group.
currentGroupNames= me.getVertGroupNames()
for group in currentGroupNames:
if group not in groupNames:
me.removeVertGroup(group) # messes up the active group.
else:
me.removeVertsFromGroup(group)
# Add clean unused vert groupNames back
currentGroupNames= me.getVertGroupNames()
for group in groupNames:
if group not in currentGroupNames:
me.addVertGroup(group)
add_ = Blender.Mesh.AssignModes.ADD
vertList= [None]
for i, v in enumerate(me.verts):
vertList[0]= i
for group, weight in vWeightDict[i].iteritems():
try:
me.assignVertsToGroup(group, vertList, min(1, max(0, weight)), add_)
except:
pass # vert group is not used anymore.
try: me.activeGroup = act_group
except: pass
me.update()
def dictWeightMerge(dict_weights):
'''
Takes dict weight list and merges into 1 weight dict item and returns it
'''
if not dict_weights:
return {}
keys= []
for weight in dict_weights:
keys.extend([ (k, 0.0) for k in weight.iterkeys() ])
new_wdict = dict(keys)
len_dict_weights= len(dict_weights)
for weight in dict_weights:
for group, value in weight.iteritems():
new_wdict[group] += value/len_dict_weights
return new_wdict
FLIPNAMES=[\
('Left','Right'),\
('_L','_R'),\
('-L','-R'),\
('.L','.R'),\
]
def dictWeightFlipGroups(dict_weight, groupNames, createNewGroups):
'''
Returns a weight with flip names
dict_weight - 1 vert weight.
groupNames - because we may need to add new group names.
dict_weight - Weather to make new groups where needed.
'''
def flipName(name):
for n1,n2 in FLIPNAMES:
for nA, nB in ( (n1,n2), (n1.lower(),n2.lower()), (n1.upper(),n2.upper()) ):
if createNewGroups:
newName= name.replace(nA,nB)
if newName!=name:
if newName not in groupNames:
groupNames.append(newName)
return newName
newName= name.replace(nB,nA)
if newName!=name:
if newName not in groupNames:
groupNames.append(newName)
return newName
else:
newName= name.replace(nA,nB)
if newName!=name and newName in groupNames:
return newName
newName= name.replace(nB,nA)
if newName!=name and newName in groupNames:
return newName
return name
if not dict_weight:
return dict_weight, groupNames
new_wdict = {}
for group, weight in dict_weight.iteritems():
flipname= flipName(group)
new_wdict[flipname]= weight
return new_wdict, groupNames
def mesh2linkedFaces(me):
'''
Splits the mesh into connected parts,
these parts are returned as lists of faces.
used for seperating cubes from other mesh elements in the 1 mesh
'''
# Build vert face connectivity
vert_faces= [[] for i in xrange(len(me.verts))]
for f in me.faces:
for v in f:
vert_faces[v.index].append(f)
# sort faces into connectivity groups
face_groups= [[f] for f in me.faces]
face_mapping = range(len(me.faces)) # map old, new face location
# Now clump faces iterativly
ok= True
while ok:
ok= False
for i, f in enumerate(me.faces):
mapped_index= face_mapping[f.index]
mapped_group= face_groups[mapped_index]
for v in f:
for nxt_f in vert_faces[v.index]:
if nxt_f != f:
nxt_mapped_index= face_mapping[nxt_f.index]
# We are not a part of the same group
if mapped_index != nxt_mapped_index:
ok= True
# Assign mapping to this group so they all map to this group
for grp_f in face_groups[nxt_mapped_index]:
face_mapping[grp_f.index] = mapped_index
# Move faces into this group
mapped_group.extend(face_groups[nxt_mapped_index])
# remove reference to the list
face_groups[nxt_mapped_index]= None
# return all face groups that are not null
# this is all the faces that are connected in their own lists.
return [fg for fg in face_groups if fg]
def getFaceLoopEdges(faces, seams=[]):
'''
Takes me.faces or a list of faces and returns the edge loops
These edge loops are the edges that sit between quads, so they dont touch
1 quad, not not connected will make 2 edge loops, both only containing 2 edges.
return a list of edge key lists
[ [(0,1), (4, 8), (3,8)], ...]
optionaly, seams are edge keys that will be removed
'''
OTHER_INDEX = 2,3,0,1 # opposite face index
edges = {}
for f in faces:
if len(f) == 4:
edge_keys = f.edge_keys
for i, edkey in enumerate(f.edge_keys):
edges.setdefault(edkey, []).append(edge_keys[OTHER_INDEX[i]])
for edkey in seams:
edges[edkey] = []
# Collect edge loops here
edge_loops = []
for edkey, ed_adj in edges.iteritems():
if 0 <len(ed_adj) < 3: # 1 or 2
# Seek the first edge
context_loop = [edkey, ed_adj[0]]
edge_loops.append(context_loop)
if len(ed_adj) == 2:
other_dir = ed_adj[1]
else:
other_dir = None
ed_adj[:] = []
flipped = False
while 1:
# from knowing the last 2, look for th next.
ed_adj = edges[context_loop[-1]]
if len(ed_adj) != 2:
if other_dir and flipped==False: # the original edge had 2 other edges
flipped = True # only flip the list once
context_loop.reverse()
ed_adj[:] = []
context_loop.append(other_dir) # save 1 lookiup
ed_adj = edges[context_loop[-1]]
if len(ed_adj) != 2:
ed_adj[:] = []
break
else:
ed_adj[:] = []
break
i = ed_adj.index(context_loop[-2])
context_loop.append( ed_adj[ not i] )
# Dont look at this again
ed_adj[:] = []
return edge_loops
def getMeshFromObject(ob, container_mesh=None, apply_modifiers=True, vgroups=True, scn=None):
'''
ob - the object that you want to get the mesh from
container_mesh - a Blender.Mesh type mesh that is reused to avoid a new datablock per call to getMeshFromObject
apply_modifiers - if enabled, subsurf bones etc. will be applied to the returned mesh. disable to get a copy of the mesh.
vgroup - For mesh objects only, apply the vgroup to the the copied mesh. (slower)
scn - Scene type. avoids getting the current scene each time getMeshFromObject is called.
Returns Mesh or None
'''
if not scn:
scn= bpy.data.scenes.active
if not container_mesh:
mesh = bpy.data.meshes.new(ob.name)
else:
mesh= container_mesh
mesh.verts= None
ob_type = ob.type
dataname = ob.getData(1)
tempob= None
if apply_modifiers or ob_type != 'Mesh':
try:
mesh.getFromObject(ob)
except:
return None
else:
'''
Dont apply modifiers, copy the mesh.
So we can transform the data. its easiest just to get a copy of the mesh.
'''
tempob= scn.objects.new(ob.getData(mesh=1))
mesh.getFromObject(tempob)
scn.objects.unlink(tempob)
if ob_type == 'Mesh':
if vgroups:
if tempob==None:
tempob= Blender.Object.New('Mesh')
tempob.link(mesh)
try:
# Copy the influences if possible.
groupNames, vWeightDict= meshWeight2Dict(ob.getData(mesh=1))
dict2MeshWeight(mesh, groupNames, vWeightDict)
except:
# if the modifier changes the vert count then it messes it up for us.
pass
return mesh
def faceRayIntersect(f, orig, rdir):
'''
Returns face, side
Side is the side of a quad we intersect.
side 0 == 0,1,2
side 1 == 0,2,3
'''
f_v= f.v
isect= Blender.Mathutils.Intersect(f_v[0].co, f_v[1].co, f_v[2].co, rdir, orig, 1) # 1==clip
if isect:
return isect, 0
if len(f_v)==4:
isect= Blender.Mathutils.Intersect(f_v[0].co, f_v[2].co, f_v[3].co, rdir, orig, 1) # 1==clip
if isect:
return isect, 1
return False, 0
def pickMeshRayFace(me, orig, rdir):
best_dist= 1000000
best_isect= best_side= best_face= None
for f in me.faces:
isect, side= faceRayIntersect(f, orig, rdir)
if isect:
dist= (isect-orig).length
if dist<best_dist:
best_dist= dist
best_face= f
best_side= side
best_isect= isect
return best_face, best_isect, best_side
def pickMeshRayFaceWeight(me, orig, rdir):
f, isect, side = pickMeshRayFace(me, orig, rdir)
if f==None:
return None, None, None, None, None
f_v= [v.co for v in f]
if side==1: # we can leave side 0 without changes.
f_v = f_v[0], f_v[2], f_v[3]
l0= (f_v[0]-isect).length
l1= (f_v[1]-isect).length
l2= (f_v[2]-isect).length
w0 = (l1+l2)
w1 = (l0+l2)
w2 = (l1+l0)
totw= w0 + w1 + w2
w0=w0/totw
w1=w1/totw
w2=w2/totw
return f, side, w0, w1, w2
def pickMeshGroupWeight(me, act_group, orig, rdir):
f, side, w0, w1, w2= pickMeshRayFaceWeight(me, orig, rdir)
if f==None:
return None
f_v= f.v
if side==0:
f_vi= (f_v[0].index, f_v[1].index, f_v[2].index)
else:
f_vi= (f_v[0].index, f_v[2].index, f_v[3].index)
vws= [0.0,0.0,0.0]
for i in xrange(3):
try: vws[i]= me.getVertsFromGroup(act_group, 1, [f_vi[i],])[0][1]
except: pass
return w0*vws[0] + w1*vws[1] + w2*vws[2]
def pickMeshGroupVCol(me, orig, rdir):
Vector= Blender.Mathutils.Vector
f, side, w0, w1, w2= pickMeshRayFaceWeight(me, orig, rdir)
if f==None:
return None
def col2vec(c):
return Vector(c.r, c.g, c.b)
if side==0:
idxs= 0,1,2
else:
idxs= 0,2,3
f_c= f.col
f_colvecs= [col2vec(f_c[i]) for i in idxs]
return f_colvecs[0]*w0 + f_colvecs[1]*w1 + f_colvecs[2]*w2
def edge_face_users(me):
'''
Takes a mesh and returns a list aligned with the meshes edges.
Each item is a list of the faces that use the edge
would be the equiv for having ed.face_users as a property
'''
face_edges_dict= dict([(ed.key, (ed.index, [])) for ed in me.edges])
for f in me.faces:
fvi= [v.index for v in f]# face vert idx's
for edkey in f.edge_keys:
face_edges_dict[edkey][1].append(f)
face_edges= [None] * len(me.edges)
for ed_index, ed_faces in face_edges_dict.itervalues():
face_edges[ed_index]= ed_faces
return face_edges
def face_edges(me):
'''
Returns a list alligned to the meshes faces.
each item is a list of lists: that is
face_edges -> face indicies
face_edges[i] -> list referencs local faces v indicies 1,2,3 &| 4
face_edges[i][j] -> list of faces that this edge uses.
crap this is tricky to explain :/
'''
face_edges= [ [-1] * len(f) for f in me.faces ]
face_edges_dict= dict([(ed.key, []) for ed in me.edges])
for fidx, f in enumerate(me.faces):
for i, edkey in enumerate(f.edge_keys):
edge_face_users= face_edges_dict[edkey]
edge_face_users.append(f)
face_edges[fidx][i]= edge_face_users
return face_edges
def facesPlanerIslands(me):
def roundvec(v):
return round(v[0], 4), round(v[1], 4), round(v[2], 4)
face_props= [(cent, no, roundvec(no), cent.dot(no)) for f in me.faces for no, cent in ((f.no, f.cent),)]
face_edge_users= face_edges(me)
islands= []
used_faces= [0] * len(me.faces)
while True:
new_island= False
for i, used_val in enumerate(used_faces):
if used_val==0:
island= [i]
new_island= True
used_faces[i]= 1
break
if not new_island:
break
island_growing= True
while island_growing:
island_growing= False
for fidx1 in island[:]:
if used_faces[fidx1]==1:
used_faces[fidx1]= 2
face_prop1= face_props[fidx1]
for ed in face_edge_users[fidx1]:
for f2 in ed:
fidx2= f2.index
if fidx1 != fidx2 and used_faces[fidx2]==0:
island_growing= True
face_prop2= face_props[fidx2]
# normals are the same?
if face_prop1[2]==face_prop2[2]:
if abs(face_prop1[3] - face_prop1[1].dot(face_prop2[0])) < 0.000001:
used_faces[fidx2]= 1
island.append(fidx2)
islands.append([me.faces[i] for i in island])
return islands
def facesUvIslands(me, PREF_IMAGE_DELIMIT=True):
def roundvec(v):
return round(v[0], 4), round(v[1], 4)
if not me.faceUV:
return [ list(me.faces), ]
# make a list of uv dicts
face_uvs= [ [roundvec(uv) for uv in f.uv] for f in me.faces]
# key - face uv || value - list of face idxs
uv_connect_dict= dict([ (uv, [] ) for f_uvs in face_uvs for uv in f_uvs])
for i, f_uvs in enumerate(face_uvs):
for uv in f_uvs: # loops through rounded uv values
uv_connect_dict[uv].append(i)
islands= []
used_faces= [0] * len(me.faces)
while True:
new_island= False
for i, used_val in enumerate(used_faces):
if used_val==0:
island= [i]
new_island= True
used_faces[i]= 1
break
if not new_island:
break
island_growing= True
while island_growing:
island_growing= False
for fidx1 in island[:]:
if used_faces[fidx1]==1:
used_faces[fidx1]= 2
for uv in face_uvs[fidx1]:
for fidx2 in uv_connect_dict[uv]:
if fidx1 != fidx2 and used_faces[fidx2]==0:
if not PREF_IMAGE_DELIMIT or me.faces[fidx1].image==me.faces[fidx2].image:
island_growing= True
used_faces[fidx2]= 1
island.append(fidx2)
islands.append([me.faces[i] for i in island])
return islands
#def faceUvBounds(me, faces= None):
def facesUvRotate(me, deg, faces= None, pivot= (0,0)):
'''
Faces can be None an all faces will be used
pivot is just the x/y well rotated about
positive deg value for clockwise rotation
'''
if faces==None: faces= me.faces
pivot= Blender.Mathutils.Vector(pivot)
rotmat= Blender.Mathutils.RotationMatrix(-deg, 2)
for f in faces:
f.uv= [((uv-pivot)*rotmat)+pivot for uv in f.uv]
def facesUvScale(me, sca, faces= None, pivot= (0,0)):
'''
Faces can be None an all faces will be used
pivot is just the x/y well rotated about
sca can be wither an int/float or a vector if you want to
scale x/y seperately.
a sca or (1.0, 1.0) will do nothing.
'''
def vecmulti(v1,v2):
'''V2 is unchanged'''
v1[:]= (v1.x*v2.x, v1.y*v2.y)
return v1
sca= Blender.Mathutils.Vector(sca)
if faces==None: faces= me.faces
pivot= Blender.Mathutils.Vector(pivot)
for f in faces:
f.uv= [vecmulti(uv-pivot, sca)+pivot for uv in f.uv]
def facesUvTranslate(me, tra, faces= None, pivot= (0,0)):
'''
Faces can be None an all faces will be used
pivot is just the x/y well rotated about
'''
if faces==None: faces= me.faces
tra= Blender.Mathutils.Vector(tra)
for f in faces:
f.uv= [uv+tra for uv in f.uv]
def edgeFaceUserCount(me, faces= None):
'''
Return an edge aligned list with the count for all the faces that use that edge. -
can spesify a subset of the faces, so only those will be counted.
'''
if faces==None:
faces= me.faces
max_vert= len(me.verts)
else:
# find the lighest vert index
pass
edge_users= [0] * len(me.edges)
edges_idx_dict= dict([(ed.key, ed.index) for ed in me.edges])
for f in faces:
for edkey in f.edge_keys:
edge_users[edges_idx_dict[edkey]] += 1
return edge_users
#============================================================================#
# Takes a face, and a pixel x/y on the image and returns a worldspace x/y/z #
# will return none if the pixel is not inside the faces UV #
#============================================================================#
def getUvPixelLoc(face, pxLoc, img_size = None, uvArea = None):
TriangleArea= Blender.Mathutils.TriangleArea
Vector= Blender.Mathutils.Vector
if not img_size:
w,h = face.image.size
else:
w,h= img_size
scaled_uvs= [Vector(uv.x*w, uv.y*h) for uv in f.uv]
if len(scaled_uvs)==3:
indicies= ((0,1,2),)
else:
indicies= ((0,1,2), (0,2,3))
for fidxs in indicies:
for i1,i2,i3 in fidxs:
# IS a point inside our triangle?
# UVArea could be cached?
uv_area = TriangleArea(scaled_uvs[i1], scaled_uvs[i2], scaled_uvs[i3])
area0 = TriangleArea(pxLoc, scaled_uvs[i2], scaled_uvs[i3])
area1 = TriangleArea(pxLoc, scaled_uvs[i1], scaled_uvs[i3])
area2 = TriangleArea(pxLoc, scaled_uvs[i1], scaled_uvs[i2])
if area0 + area1 + area2 > uv_area + 1: # 1 px bleed/error margin.
pass # if were a quad the other side may contain the pixel so keep looking.
else:
# We know the point is in the tri
area0 /= uv_area
area1 /= uv_area
area2 /= uv_area
# New location
return Vector(\
face.v[i1].co[0]*area0 + face.v[i2].co[0]*area1 + face.v[i3].co[0]*area2,\
face.v[i1].co[1]*area0 + face.v[i2].co[1]*area1 + face.v[i3].co[1]*area2,\
face.v[i1].co[2]*area0 + face.v[i2].co[2]*area1 + face.v[i3].co[2]*area2\
)
return None
# Used for debugging ngon
"""
def draw_loops(loops):
me= Blender.Mesh.New()
for l in loops:
#~ me= Blender.Mesh.New()
i= len(me.verts)
me.verts.extend([v[0] for v in l])
try:
me.verts[0].sel= 1
except:
pass
me.edges.extend([ (j-1, j) for j in xrange(i+1, len(me.verts)) ])
# Close the edge?
me.edges.extend((i, len(me.verts)-1))
#~ ob= Blender.Object.New('Mesh')
#~ ob.link(me)
#~ scn= Blender.Scene.GetCurrent()
#~ scn.link(ob)
#~ ob.Layers= scn.Layers
#~ ob.sel= 1
# Fill
#fill= Blender.Mathutils.PolyFill(loops)
#me.faces.extend(fill)
ob= Blender.Object.New('Mesh')
ob.link(me)
scn= Blender.Scene.GetCurrent()
scn.link(ob)
ob.Layers= scn.Layers
ob.sel= 1
Blender.Window.RedrawAll()
"""
def ngon(from_data, indices, PREF_FIX_LOOPS= True):
'''
Takes a polyline of indices (fgon)
and returns a list of face indicie lists.
Designed to be used for importers that need indices for an fgon to create from existing verts.
from_data: either a mesh, or a list/tuple of vectors.
indices: a list of indicies to use this list is the ordered closed polyline to fill, and can be a subset of the data given.
PREF_FIX_LOOPS: If this is enabled polylines that use loops to make multiple polylines are delt with correctly.
'''
if not set: # Need sets for this, otherwise do a normal fill.
PREF_FIX_LOOPS= False
Vector= Blender.Mathutils.Vector
if not indices:
return []
# return []
def rvec(co): return round(co.x, 6), round(co.y, 6), round(co.z, 6)
def mlen(co): return abs(co[0])+abs(co[1])+abs(co[2]) # manhatten length of a vector, faster then length
def vert_treplet(v, i):
return v, rvec(v), i, mlen(v)
def ed_key_mlen(v1, v2):
if v1[3] > v2[3]:
return v2[1], v1[1]
else:
return v1[1], v2[1]
if not PREF_FIX_LOOPS:
'''
Normal single concave loop filling
'''
if type(from_data) in (tuple, list):
verts= [Vector(from_data[i]) for ii, i in enumerate(indices)]
else:
verts= [from_data.verts[i].co for ii, i in enumerate(indices)]
for i in xrange(len(verts)-1, 0, -1): # same as reversed(xrange(1, len(verts))):
if verts[i][1]==verts[i-1][0]:
verts.pop(i-1)
fill= Blender.Geometry.PolyFill([verts])
else:
'''
Seperate this loop into multiple loops be finding edges that are used twice
This is used by lightwave LWO files a lot
'''
if type(from_data) in (tuple, list):
verts= [vert_treplet(Vector(from_data[i]), ii) for ii, i in enumerate(indices)]
else:
verts= [vert_treplet(from_data.verts[i].co, ii) for ii, i in enumerate(indices)]
edges= [(i, i-1) for i in xrange(len(verts))]
if edges:
edges[0]= (0,len(verts)-1)
if not verts:
return []
edges_used= set()
edges_doubles= set()
# We need to check if any edges are used twice location based.
for ed in edges:
edkey= ed_key_mlen(verts[ed[0]], verts[ed[1]])
if edkey in edges_used:
edges_doubles.add(edkey)
else:
edges_used.add(edkey)
# Store a list of unconnected loop segments split by double edges.
# will join later
loop_segments= []
v_prev= verts[0]
context_loop= [v_prev]
loop_segments= [context_loop]
for v in verts:
if v!=v_prev:
# Are we crossing an edge we removed?
if ed_key_mlen(v, v_prev) in edges_doubles:
context_loop= [v]
loop_segments.append(context_loop)
else:
if context_loop and context_loop[-1][1]==v[1]:
#raise "as"
pass
else:
context_loop.append(v)
v_prev= v
# Now join loop segments
def join_seg(s1,s2):
if s2[-1][1]==s1[0][1]: #
s1,s2= s2,s1
elif s1[-1][1]==s2[0][1]:
pass
else:
return False
# If were stuill here s1 and s2 are 2 segments in the same polyline
s1.pop() # remove the last vert from s1
s1.extend(s2) # add segment 2 to segment 1
if s1[0][1]==s1[-1][1]: # remove endpoints double
s1.pop()
s2[:]= [] # Empty this segment s2 so we dont use it again.
return True
joining_segments= True
while joining_segments:
joining_segments= False
segcount= len(loop_segments)
for j in xrange(segcount-1, -1, -1): #reversed(xrange(segcount)):
seg_j= loop_segments[j]
if seg_j:
for k in xrange(j-1, -1, -1): # reversed(xrange(j)):
if not seg_j:
break
seg_k= loop_segments[k]
if seg_k and join_seg(seg_j, seg_k):
joining_segments= True
loop_list= loop_segments
for verts in loop_list:
while verts and verts[0][1]==verts[-1][1]:
verts.pop()
loop_list= [verts for verts in loop_list if len(verts)>2]
# DONE DEALING WITH LOOP FIXING
# vert mapping
vert_map= [None]*len(indices)
ii=0
for verts in loop_list:
if len(verts)>2:
for i, vert in enumerate(verts):
vert_map[i+ii]= vert[2]
ii+=len(verts)
fill= Blender.Geometry.PolyFill([ [v[0] for v in loop] for loop in loop_list ])
#draw_loops(loop_list)
#raise 'done loop'
# map to original indicies
fill= [[vert_map[i] for i in reversed(f)] for f in fill]
if not fill:
print 'Warning Cannot scanfill, fallback on a triangle fan.'
fill= [ [0, i-1, i] for i in xrange(2, len(indices)) ]
else:
# Use real scanfill.
# See if its flipped the wrong way.
flip= None
for fi in fill:
if flip != None:
break
for i, vi in enumerate(fi):
if vi==0 and fi[i-1]==1:
flip= False
break
elif vi==1 and fi[i-1]==0:
flip= True
break
if not flip:
for i, fi in enumerate(fill):
fill[i]= tuple([ii for ii in reversed(fi)])
return fill
# EG
'''
scn= Scene.GetCurrent()
me = scn.getActiveObject().getData(mesh=1)
ind= [v.index for v in me.verts if v.sel] # Get indices
indices = ngon(me, ind) # fill the ngon.
# Extand the faces to show what the scanfill looked like.
print len(indices)
me.faces.extend([[me.verts[ii] for ii in i] for i in indices])
'''
def meshCalcNormals(me, vertNormals=None):
'''
takes a mesh and returns very high quality normals 1 normal per vertex.
The normals should be correct, indipendant of topology
vertNormals - a list of vectors at least as long as the number of verts in the mesh
'''
Ang= Blender.Mathutils.AngleBetweenVecs
Vector= Blender.Mathutils.Vector
SMALL_NUM=0.000001
# Weight the edge normals by total angle difference
# EDGE METHOD
if not vertNormals:
vertNormals= [ Vector() for v in xrange(len(me.verts)) ]
else:
for v in vertNormals:
v.zero()
edges={}
for f in me.faces:
f_v = f.v
for edkey in f.edge_keys:
edges.setdefault(edkey, []).append(f.no)
# Weight the edge normals by total angle difference
for fnos in edges.itervalues():
len_fnos= len(fnos)
if len_fnos>1:
totAngDiff=0
for j in xrange(len_fnos-1, -1, -1): # same as reversed(xrange(...))
for k in xrange(j-1, -1, -1): # same as reversed(xrange(...))
#print j,k
try:
totAngDiff+= (Ang(fnos[j], fnos[k])) # /180 isnt needed, just to keeop the vert small.
except:
pass # Zero length face
# print totAngDiff
if totAngDiff > SMALL_NUM:
'''
average_no= Vector()
for no in fnos:
average_no+=no
'''
average_no= reduce(lambda a,b: a+b, fnos, Vector())
fnos.append(average_no*totAngDiff) # average no * total angle diff
#else:
# fnos[0]
else:
fnos.append(fnos[0])
for ed, v in edges.iteritems():
vertNormals[ed[0]]+= v[-1]
vertNormals[ed[1]]+= v[-1]
for i, v in enumerate(me.verts):
v.no= vertNormals[i]
def pointInsideMesh(ob, pt):
Intersect = Blender.Mathutils.Intersect # 2 less dict lookups.
Vector = Blender.Mathutils.Vector
def ptInFaceXYBounds(f, pt):
f_v = f.v
co= f_v[0].co
xmax= xmin= co.x
ymax= ymin= co.y
co= f_v[1].co
xmax= max(xmax, co.x)
xmin= min(xmin, co.x)
ymax= max(ymax, co.y)
ymin= min(ymin, co.y)
co= f_v[2].co
xmax= max(xmax, co.x)
xmin= min(xmin, co.x)
ymax= max(ymax, co.y)
ymin= min(ymin, co.y)
if len(f_v)==4:
co= f_v[3].co
xmax= max(xmax, co.x)
xmin= min(xmin, co.x)
ymax= max(ymax, co.y)
ymin= min(ymin, co.y)
# Now we have the bounds, see if the point is in it.
if\
pt.x < xmin or\
pt.y < ymin or\
pt.x > xmax or\
pt.y > ymax:
return False # point is outside face bounds
else:
return True # point inside.
#return xmax, ymax, xmin, ymin
def faceIntersect(f):
f_v = f.v
isect = Intersect(f_v[0].co, f_v[1].co, f_v[2].co, ray, obSpacePt, 1) # Clipped.
if not isect and len(f) == 4:
isect = Intersect(f_v[0].co, f_v[2].co, f_v[3].co, ray, obSpacePt, 1) # Clipped.
if isect and isect.z > obSpacePt.z: # This is so the ray only counts if its above the point.
return True
else:
return False
obSpacePt = pt*ob.matrixWorld.copy().invert()
ray = Vector(0,0,-1)
me= ob.getData(mesh=1)
# Here we find the number on intersecting faces, return true if an odd number (inside), false (outside) if its true.
return len([None for f in me.faces if ptInFaceXYBounds(f, obSpacePt) if faceIntersect(f)]) % 2
def faceAngles(f):
'''
Returns the angle between all corners in a tri or a quad
'''
AngleBetweenVecs = Blender.Mathutils.AngleBetweenVecs
def Ang(a1,a2):
try: return AngleBetweenVecs(a1,a2)
except: return 180
if len(f) == 3:
if type(f) in (tuple, list): v1,v2,v3 = f
else: v1,v2,v3 = [v.co for v in f]
a1= Ang(v2-v1,v3-v1)
a2= Ang(v1-v2,v3-v2)
a3 = 180 - (a1+a2) # a3= Mathutils.AngleBetweenVecs(v2-v3,v1-v3)
return a1,a2,a3
else:
if type(f) in (tuple, list): v1,v2,v3,v4 = f
else: v1,v2,v3,v4 = [v.co for v in f]
a1= Ang(v2-v1,v4-v1)
a2= Ang(v1-v2,v3-v2)
a3= Ang(v2-v3,v4-v3)
a4= Ang(v3-v4,v1-v4)
return a1,a2,a3,a4
# NMesh wrapper
Vector= Blender.Mathutils.Vector
class NMesh(object):
__slots__= 'verts', 'faces', 'edges', 'faceUV', 'materials', 'realmesh'
def __init__(self, mesh):
'''
This is an NMesh wrapper that
mesh is an Mesh as returned by Blender.Mesh.New()
This class wraps NMesh like access into Mesh
Running NMesh.update() - with this wrapper,
Will update the realmesh.
'''
self.verts= []
self.faces= []
self.edges= []
self.faceUV= False
self.materials= []
self.realmesh= mesh
def addFace(self, nmf):
self.faces.append(nmf)
def Face(self, v=[]):
return NMFace(v)
def Vert(self, x,y,z):
return NMVert(x,y,z)
def hasFaceUV(self, flag):
if flag:
self.faceUV= True
else:
self.faceUV= False
def addMaterial(self, mat):
self.materials.append(mat)
def update(self, recalc_normals=False): # recalc_normals is dummy
mesh= self.realmesh
mesh.verts= None # Clears the
# Add in any verts from faces we may have not added.
for nmf in self.faces:
for nmv in nmf.v:
if nmv.index==-1:
nmv.index= len(self.verts)
self.verts.append(nmv)
mesh.verts.extend([nmv.co for nmv in self.verts])
for i, nmv in enumerate(self.verts):
nmv.index= i
mv= mesh.verts[i]
mv.sel= nmv.sel
good_faces= [nmf for nmf in self.faces if len(nmf.v) in (3,4)]
#print len(good_faces), 'AAA'
#mesh.faces.extend([nmf.v for nmf in self.faces])
mesh.faces.extend([[mesh.verts[nmv.index] for nmv in nmf.v] for nmf in good_faces])
if len(mesh.faces):
if self.faceUV:
mesh.faceUV= 1
#for i, nmf in enumerate(self.faces):
for i, nmf in enumerate(good_faces):
mf= mesh.faces[i]
if self.faceUV:
if len(nmf.uv) == len(mf.v):
mf.uv= [Vector(uv[0], uv[1]) for uv in nmf.uv]
if len(nmf.col) == len(mf.v):
for c, i in enumerate(mf.col):
c.r, c.g, c.b= nmf.col[i].r, nmf.col[i].g, nmf.col[i].b
if nmf.image:
mf.image= nmf.image
mesh.materials= self.materials[:16]
class NMVert(object):
__slots__= 'co', 'index', 'no', 'sel', 'uvco'
def __init__(self, x,y,z):
self.co= Vector(x,y,z)
self.index= None # set on appending.
self.no= Vector(0,0,1) # dummy
self.sel= 0
self.uvco= None
class NMFace(object):
__slots__= 'col', 'flag', 'hide', 'image', 'mat', 'materialIndex', 'mode', 'normal',\
'sel', 'smooth', 'transp', 'uv', 'v'
def __init__(self, v=[]):
self.col= []
self.flag= 0
self.hide= 0
self.image= None
self.mat= 0 # materialIndex needs support too.
self.mode= 0
self.normal= Vector(0,0,1)
self.uv= []
self.sel= 0
self.smooth= 0
self.transp= 0
self.uv= []
self.v= [] # a list of nmverts.
class NMCol(object):
__slots__ = 'r', 'g', 'b', 'a'
def __init__(self):
self.r= 255
self.g= 255
self.b= 255
self.a= 255
'''
#
verts_split= [dict() for i in xrange(len(me.verts))]
tot_verts= 0
for f in me.faces:
f_uv= f.uv
for i, v in enumerate(f.v):
vert_index= v.index # mesh index
vert_dict= verts_split[vert_index] # get the dict for this vert
uv= f_uv[i]
# now we have the vert and the face uv well make a unique dict.
vert_key= v.x, v.y, v.x, uv.x, uv.y # ADD IMAGE NAME HETR IF YOU WANT TO SPLIT BY THAT TOO
value= vert_index, tot_verts # ADD WEIGHT HERE IF YOU NEED.
try:
vert_dict[vert_key] # if this is missing it will fail.
except:
# this stores a mapping between the split and orig vert indicies
vert_dict[vert_key]= value
tot_verts+= 1
# a flat list of split verts - can add custom weight data here too if you need
split_verts= [None]*tot_verts
for vert_split_dict in verts_split:
for key, value in vert_split_dict.iteritems():
local_index, split_index= value
split_verts[split_index]= key
# split_verts - Now you have a list of verts split by their UV.
'''