#include "Object.h" #include ///////////////////////////////////////////////////////////////////////// // public constructor/destructor Object::Object(const char* path) { // open file fsMesh.open(path, std::ios::in | std::ios::binary); if (!fsMesh.is_open()) throw std::invalid_argument(std::string("file not found: ") += path); // jump into msh2 todo: search for MSH2 if there is a shadowvolume fsMesh.seekg(8); char tempChunkName[5] = { 0 }; fsMesh.read(reinterpret_cast(&tempChunkName[0]), sizeof(tempChunkName) - 1); if (strcmp(tempChunkName, "MSH2")) throw std::invalid_argument(std::string("corrupted file MSH2 expected instead of ") += tempChunkName); std::uint32_t tempSize; fsMesh.read(reinterpret_cast(&tempSize), sizeof(tempSize)); // get all sub chunks from MSH2 loadChunks(lChunkMsh2, fsMesh.tellg(), tempSize); // search for all MODL Chunks for (std::list::iterator it = lChunkMsh2.begin(); it != lChunkMsh2.end(); it++) { if (!strcmp("MODL", (*it)->name)) { Modl* tempModl = new Modl; // get all subchunks std::list tempChunks; loadChunks(tempChunks, (*it)->position, (*it)->size); // evaluate MODL subchunks analyseModlChunks(tempModl, tempChunks); //clean up while (!tempChunks.empty()) { ChunkHeader* tempCursor = tempChunks.front(); tempChunks.pop_front(); delete tempCursor; } // save Model data lModls.push_back(tempModl); } } // close file fsMesh.close(); } Object::~Object() { //delete Chunk list; } ///////////////////////////////////////////////////////////////////////// // private functions void Object::setModlDefault(Modl * model) { model->name = ""; model->parent = ""; model->type = null; model->renderFlags = -1; model->tran.scale[0] = 0; model->tran.scale[1] = 0; model->tran.scale[2] = 0; model->tran.rotation[0] = 0; model->tran.rotation[1] = 0; model->tran.rotation[2] = 0; model->tran.rotation[3] = 0; model->tran.translation[0] = 0; model->tran.translation[1] = 0; model->tran.translation[2] = 0; model->swci.type = -1; model->swci.data1 = -1; model->swci.data2 = -1; model->swci.data3 = -1; model->texture = ""; model->vertex = NULL; model->uv = NULL; model->mesh = NULL; model->meshSize = 0; } void Object::loadChunks(std::list& destination, std::streampos start, const std::uint32_t end) { // jump to first chunk fsMesh.seekg(start); do { ChunkHeader* tempHeader = new ChunkHeader(); fsMesh.read(reinterpret_cast(&tempHeader->name[0]), sizeof(tempHeader->name) - 1); fsMesh.read(reinterpret_cast(&tempHeader->size), sizeof(tempHeader->size)); tempHeader->position = fsMesh.tellg(); destination.push_back(tempHeader); fsMesh.seekg(tempHeader->size, std::ios_base::cur); // reached end if (fsMesh.tellg() - start == end) break; // error. Maybe the size information is corrupted if (!fsMesh.good()) { std::cout << "WARNING: corrupted file. Trying to continue" << std::endl; fsMesh.clear(); break; } } while (true); std::cout << "got all chunks, totaly found: " << destination.size() << std::endl; } void Object::analyseModlChunks(Modl* dataDestination, std::list& chunkList) { for (std::list::iterator it = chunkList.begin(); it != chunkList.end(); it++) { if (!strcmp("MTYP", (*it)->name)) { fsMesh.seekg((*it)->position); std::uint32_t tempType; fsMesh.read(reinterpret_cast(&tempType), sizeof(tempType)); dataDestination->type = (Mtyp)tempType; continue; } if (!strcmp("PRNT", (*it)->name)) { fsMesh.seekg((*it)->position); char tempName[33] = { 0 }; fsMesh.read(reinterpret_cast(&tempName[0]), (*it)->size > 32 ? 32 : (*it)->size); dataDestination->parent = tempName; continue; } if (!strcmp("NAME", (*it)->name)) { fsMesh.seekg((*it)->position); char* buffer = new char[(*it)->size]; fsMesh.read(buffer, (*it)->size); dataDestination->name = buffer; continue; } if (!strcmp("FLGS", (*it)->name)) { fsMesh.seekg((*it)->position); fsMesh.read(reinterpret_cast(&dataDestination->renderFlags), sizeof(dataDestination->renderFlags)); continue; } if (!strcmp("TRAN", (*it)->name)) { fsMesh.seekg((*it)->position); fsMesh.read(reinterpret_cast(&dataDestination->tran.scale[0]), sizeof(float)); fsMesh.read(reinterpret_cast(&dataDestination->tran.scale[1]), sizeof(float)); fsMesh.read(reinterpret_cast(&dataDestination->tran.scale[2]), sizeof(float)); fsMesh.read(reinterpret_cast(&dataDestination->tran.rotation[0]), sizeof(float)); fsMesh.read(reinterpret_cast(&dataDestination->tran.rotation[1]), sizeof(float)); fsMesh.read(reinterpret_cast(&dataDestination->tran.rotation[2]), sizeof(float)); fsMesh.read(reinterpret_cast(&dataDestination->tran.rotation[3]), sizeof(float)); fsMesh.read(reinterpret_cast(&dataDestination->tran.translation[0]), sizeof(float)); fsMesh.read(reinterpret_cast(&dataDestination->tran.translation[1]), sizeof(float)); fsMesh.read(reinterpret_cast(&dataDestination->tran.translation[2]), sizeof(float)); continue; } if (!strcmp("GEOM", (*it)->name)) { // get all subchunks std::list tempGeomChunks; loadChunks(tempGeomChunks, (*it)->position, (*it)->size); // evaluate GEOM subchunks analyseGeomChunks(dataDestination, tempGeomChunks); // clean up while (!tempGeomChunks.empty()) { ChunkHeader* tempCursor = tempGeomChunks.front(); tempGeomChunks.pop_front(); delete tempCursor; } continue; } if (!strcmp("SWCI", (*it)->name)) { fsMesh.seekg((*it)->position); fsMesh.read(reinterpret_cast(&dataDestination->swci.type), sizeof(dataDestination->swci.type)); fsMesh.read(reinterpret_cast(&dataDestination->swci.data1), sizeof(dataDestination->swci.data1)); fsMesh.read(reinterpret_cast(&dataDestination->swci.data2), sizeof(dataDestination->swci.data2)); fsMesh.read(reinterpret_cast(&dataDestination->swci.data3), sizeof(dataDestination->swci.data3)); continue; } } } void Object::analyseGeomChunks(Modl * dataDestination, std::list& chunkList) { for (std::list::iterator it = chunkList.begin(); it != chunkList.end(); it++) { if (!strcmp("SEGM", (*it)->name)) { // get all subchunks std::list tempSegmChunks; loadChunks(tempSegmChunks, (*it)->position, (*it)->size); // evaluate SEGM subchunks analyseSegmChunks(dataDestination, tempSegmChunks); // clean up while (!tempSegmChunks.empty()) { ChunkHeader* tempCursor = tempSegmChunks.front(); tempSegmChunks.pop_front(); delete tempCursor; } continue; } if (!strcmp("CLTH", (*it)->name)) { // get all subchunks std::list tempClthChunks; loadChunks(tempClthChunks, (*it)->position, (*it)->size); // evaluate CLTH subchunks analyseClthChunks(dataDestination, tempClthChunks); // clean up while (!tempClthChunks.empty()) { ChunkHeader* tempCursor = tempClthChunks.front(); tempClthChunks.pop_front(); delete tempCursor; } continue; } } } void Object::analyseSegmChunks(Modl * dataDestination, std::list& chunkList) { for (std::list::iterator it = chunkList.begin(); it != chunkList.end(); it++) { if (!strcmp("SHDW", (*it)->name)) { fsMesh.seekg((*it)->position); /* shadow mesh geometry long int - 4 - number of vertex positions float[3][] - 12 each - vertex positions (XYZ) long int - 4 - number of edges short int[4][] - 8 each - edge the following 4 entries from one edge > short int - 2 - vertex index of this edge, referes to the vertex list > short int - 2 - Reference into an edge. Defines the target vertex (the local edge vertex of the referenced edge) to which the edge should be dran from the local vertex > short int - 2 - Second reference into an edge. In all example .msh files I've seen this always refers to the same vertex as the first edge reference > short int - 2 - MAX_VALUE of short integers (65535). Indicates the end of this edge */ continue; } if (!strcmp("MATI", (*it)->name)) { fsMesh.seekg((*it)->position); // material index index into MATL // long int - 4 - material index continue; } if (!strcmp("POSL", (*it)->name)) { readVertex(dataDestination, (*it)->position); continue; } if (!strcmp("NRML", (*it)->name)) { fsMesh.seekg((*it)->position); // List of normals // long int - 4 - number of normal vectores stored in this list // float[3][] - 12 each - UVW vector for each vertex continue; } if (!strcmp("UV0L", (*it)->name)) { readUV(dataDestination, (*it)->position); continue; } if (!strcmp("STRP", (*it)->name)) { fsMesh.seekg((*it)->position); fsMesh.seekg((*it)->position); fsMesh.read(reinterpret_cast(&dataDestination->meshSize), sizeof(dataDestination->meshSize)); dataDestination->mesh = new std::uint32_t[dataDestination->meshSize * 3]; for (unsigned int i = 0; i < dataDestination->meshSize; i += 3) { std::uint16_t tempValue[3]; fsMesh.read(reinterpret_cast(&tempValue[0]), sizeof(std::uint16_t)); fsMesh.read(reinterpret_cast(&tempValue[1]), sizeof(std::uint16_t)); fsMesh.read(reinterpret_cast(&tempValue[2]), sizeof(std::uint16_t)); if (!(tempValue[0] >> 15 && tempValue[1] >> 15 && !(tempValue[2] >> 15))) throw std::invalid_argument("invalid file. go and triangulate!"); tempValue[0] = (std::uint16_t(tempValue[0] << 1) >> 1); tempValue[1] = (std::uint16_t(tempValue[1] << 1) >> 1); dataDestination->mesh[i] = (std::uint32_t)tempValue[0]; dataDestination->mesh[i + 1] = (std::uint32_t)tempValue[1]; dataDestination->mesh[i + 2] = (std::uint32_t)tempValue[2]; } std::cout << "vertices" << std::endl; for (int i = 0; i < dataDestination->meshSize; i += 3) std::cout << dataDestination->mesh[i] << " - " << dataDestination->mesh[i + 1] << " - " << dataDestination->mesh[i + 2] << std::endl; continue; /* List of triangles strips. The start of a strip is indicated by 2 entries with a high bit set (0x8000 or 32768 added). Triangles are listed CW, CCW, CW, CCW... NOTE: In some meshes this chunk has a trailing short which is not calculated into the length/size of this chunk or the # of indices. This short can be ignored. If added to the last polygon it will break it as it always seems to be 0. long int - 4 - number of indicies into POSL short int[] - 2 each - index into POSL the indices will form polygons */ } } } void Object::analyseClthChunks(Modl * dataDestination, std::list& chunkList) { for (std::list::iterator it = chunkList.begin(); it != chunkList.end(); it++) { if (!strcmp("CTEX", (*it)->name)) { fsMesh.seekg((*it)->position); char* buffer = new char[(*it)->size]; fsMesh.read(buffer, (*it)->size); dataDestination->texture = buffer; continue; } if (!strcmp("CPOS", (*it)->name)) { readVertex(dataDestination, (*it)->position); continue; } if (!strcmp("CUV0", (*it)->name)) { readUV(dataDestination, (*it)->position); continue; } if (!strcmp("CMSH", (*it)->name)) { fsMesh.seekg((*it)->position); fsMesh.read(reinterpret_cast(&dataDestination->meshSize), sizeof(dataDestination->meshSize)); dataDestination->mesh = new std::uint32_t[dataDestination->meshSize * 3]; for (unsigned int i = 0; i < dataDestination->meshSize; i += 3) { fsMesh.read(reinterpret_cast(&dataDestination->mesh[i]), sizeof(std::uint32_t)); fsMesh.read(reinterpret_cast(&dataDestination->mesh[i + 1]), sizeof(std::uint32_t)); fsMesh.read(reinterpret_cast(&dataDestination->mesh[i + 2]), sizeof(std::uint32_t)); } continue; } } } void Object::readVertex(Modl* dataDestination, std::streampos position) { std::uint32_t tempSize; fsMesh.seekg(position); fsMesh.read(reinterpret_cast(&tempSize), sizeof(tempSize)); dataDestination->vertex = new float[tempSize * 3]; for (unsigned int i = 0; i < tempSize; i += 3) { fsMesh.read(reinterpret_cast(&dataDestination->vertex[i]), sizeof(float)); fsMesh.read(reinterpret_cast(&dataDestination->vertex[i + 1]), sizeof(float)); fsMesh.read(reinterpret_cast(&dataDestination->vertex[i + 2]), sizeof(float)); } } void Object::readUV(Modl* dataDestination, std::streampos position) { std::uint32_t tempSize; fsMesh.seekg(position); fsMesh.read(reinterpret_cast(&tempSize), sizeof(tempSize)); dataDestination->uv = new float[tempSize * 2]; for (unsigned int i = 0; i < tempSize; i += 2) { fsMesh.read(reinterpret_cast(&dataDestination->uv[i]), sizeof(float)); fsMesh.read(reinterpret_cast(&dataDestination->uv[i + 1]), sizeof(float)); } std::cout << "UV" << std::endl; for (int i = 0; i < dataDestination->meshSize; i += 3) std::cout << dataDestination->mesh[i] << " - " << dataDestination->mesh[i + 1] << " - " << dataDestination->mesh[i + 2] << std::endl; } ///////////////////////////////////////////////////////////////////////// // public getter std::vector Object::getVertex() const { std::vector tempData; for (std::list::const_iterator it = lModls.begin(); it != lModls.end(); it++) { for (int i = 0; i < (*it)->meshSize; i += 3) { tempData.push_back((GLfloat)(*it)->vertex[(*it)->mesh[i]]); tempData.push_back((GLfloat)(*it)->vertex[(*it)->mesh[i] + 1]); tempData.push_back((GLfloat)(*it)->vertex[(*it)->mesh[i] + 2]); } } return tempData; } std::vector Object::getUV() const { std::vector tempData; for (std::list::const_iterator it = lModls.begin(); it != lModls.end(); it++) { if ((*it)->uv == NULL) continue; for (int i = 0; i < (*it)->meshSize; i++) { tempData.push_back((GLfloat)(*it)->uv[(*it)->mesh[i]]); } } return tempData; } ///////////////////////////////////////////////////////////////////////// // public functions