
eli.thegreenplace.net

RSA - theory and implementation

12-15 minutes

RSA has been a staple of public key cryptography for over 40

years, and is still being used today for some tasks in the

newest TLS 1.3 standard. This post describes the theory

behind RSA - the math that makes it work, as well as some

practical considerations; it also presents a complete

implementation of RSA key generation, encryption and

decryption in Go.

The RSA algorithm

The beauty of the RSA algorithm is its simplicity. You don't

need much more than some familiarity with elementary

number theory to understand it, and the prerequisites can be

grokked in a few hours.

In this presentation M is the message we want to encrypt,

resulting in the ciphertext C. Both M and C are large integers.

Refer to the Practical Considerations section for representing

arbitrary data with such integers.

The RSA algorithm consists of three main phases: key

RSA - theory and implementation about:reader?url=https://eli.thegreenplace.net/2...

1 of 13 11/30/19, 5:07 PM



generation, encryption and decryption.

Key generation

The first phase in using RSA is generating the public/private

keys. This is accomplished in several steps.

Step 1: find two random, very large prime numbers p and q

and calculate . How large should these primes be? The

current recommendation is for n to be at least 2048 bits, or

over 600 decimal digits. We'll assume that the message M -

represented as a number - is smaller than n (see Practical

Considerations for details on what to do if it's not).

Step 2: select a small odd integer e that is relatively prime to ,

which is Euler's totient function. is calculated directly from

Euler's formula (its proof is on Wikipedia):

For where p and q are primes, we get

In practice, it's recommended to pick e as one of a set of

known prime values, most notably 65537. Picking this known

number does not diminish the security of RSA, and has some

advantages such as efficiency [1].

Step 3: compute d as the multiplicative inverse of e modulo .

Lemma 3 in this post guarantees that d exists and is unique

(and also explains what a modular multiplicative inverse is).

At this point we have all we need for the public/private keys.

The public key is the pair and the private key is the pair . In

practice, when doing decryption we have access to n already

RSA - theory and implementation about:reader?url=https://eli.thegreenplace.net/2...

2 of 13 11/30/19, 5:07 PM



(from the public key), so d is really the only unknown.

Encryption and decryption

Encryption and decryption are both accomplished with the

same modular exponentiation formula, substituting different

values for x and y:

For encryption, the input is M and the exponent is e:

For decryption, the input is the ciphertext C and the exponent

is d:

Why does it work?

Given M, we encrypt it by raising to the power of e modulo n.

Apparently, this process is reversible by raising the result to

the power of d modulo n, getting M back. Why does this work?

Proof:

Recall that e and d are multiplicative inverses modulo . That

is, . This means that for some integer k we have or .

Let's see what is modulo p. Substituting in the formula for ed

we get:

Now we can use Fermat's little theorem, which states that if M

is not divisible by p, we have . This theorem is a special case

of Euler's theorem, the proof of which I wrote about here.

So we can substitute 1 for in the latest equation, and raising 1

to any power is still 1:

RSA - theory and implementation about:reader?url=https://eli.thegreenplace.net/2...

3 of 13 11/30/19, 5:07 PM



Note that Fermat's little theorem requires that M is not divisible

by p. We can safely assume that, because if , then trivially and

again .

We can similarly show that:

So we have for the prime factors of n. Using a corollary to the

Chinese Remainder Theorem, they are then equivalent

modulo n itself:

Since we've defined M to be smaller than n, we've shown that

∎

Why is it secure?

Without the private key in hand, attackers only have the result

of , as well as n and e (as they're part of the public key). Could

they infer M from these numbers?

There is no known general way of doing this without factoring

n (see the original RSA paper, section IX), and factoring is

known to be a difficult problem. Specifically, here we assume

that M and e are sufficiently large that (otherwise decrypting

would be trivial).

If factoring was easy, we could factor n into p and q, then

compute and then finally find d from using the extended

Euclidean algorithm.

Practical considerations

The algorithm described so far is sometimes called textbook

RSA - theory and implementation about:reader?url=https://eli.thegreenplace.net/2...

4 of 13 11/30/19, 5:07 PM



RSA (or schoolbook RSA). That's because it deals entirely in

numbers, ignoring all kinds of practical matters. In fact,

textbook RSA is susceptible to several clever attacks and has

to be enhanced with random padding schemes for practical

use.

A simple padding scheme called PKCS #1 v1.5 has been

used for many years and is defined in RFC 2313. These days

more advanced schemes like OAEP are recommended

instead, but PKCS #1 v1.5 is very easy to explain and

therefore I'll use it for didactic purposes.

Suppose we have some binary data D to encrypt. The

approach works for data of any size, but we will focus on just

encrypting small pieces of data. In practice this is sufficient

because RSA is commonly used to only encrypt a symmetric

encryption key, which is much smaller than the RSA key size

[2]. The scheme can work well enough for arbitrary sized

messages though - we'll just split it to multiple blocks with

some pre-determined block size.

From D we create a block for encryption - the block has the

same length as our RSA key:

Here PS is the padding, which should occupy all the bytes not

taken by the header and D in the block, and should be at least

8 bytes long (if it's shorter, the data may be broken into two

RSA - theory and implementation about:reader?url=https://eli.thegreenplace.net/2...

5 of 13 11/30/19, 5:07 PM



separate blocks). It's a sequence of random non-zero bytes

generated separately for each encryption. Once we have this

full block of data, we convert it to a number treating the bytes

as a big-endian encoding [3]. We end up with a large number

x, which we then perform the RSA encryption step on with .

The result is then encoded in binary and sent over the wire.

Decryption is done in reverse. We turn the received byte

stream into a number, perform , then strip off the padding

(note that the padding has no 0 bytes and is terminated with a

0, so this is easy) and get our original message back.

The random padding here makes attacks on textbook RSA

impractical, but the scheme as a whole may still be vulnerable

to more sophisticated attacks in some cases. Therefore, more

modern schemes like OAEP should be used in practice.

Implementing RSA in Go

I've implemented a simple variant of RSA encryption and

decryption as described in this post, in Go. Go makes it

particularly easy to implement cryptographic algorithms

because of its great support for arbitrary-precision integers

with the stdlib big package. Not only does this package

support basics of manipulating numbers, it also supports

several primitives specifically for cryptography - for example

the Exp method supports efficient modular exponentiation,

and the ModInverse method supports finding modular

multiplicative modular inverses. In addition, the crypto/rand

RSA - theory and implementation about:reader?url=https://eli.thegreenplace.net/2...

6 of 13 11/30/19, 5:07 PM



contains randomness primitives specifically designed for

cryptographic uses.

Go has a production-grade crypto implementation in the

standard library. RSA is in crypto/rsa, so for anything real

please use that [4]. The code shown and linked here is just for

educational purposes.

The full code, with some tests, is available on GitHub. We'll

start by defining the types to hold public and private keys:

type PublicKey struct {

N *big.Int

E *big.Int

}

type PrivateKey struct {

N *big.Int

D *big.Int

}

The code also contains a GenerateKeys function that will

randomly generate these keys with an appropriate bit length.

Given a public key, textbook encryption is simply:

func encrypt(pub *PublicKey, m *big.Int)

*big.Int {

c := new(big.Int)

c.Exp(m, pub.E, pub.N)

return c

}

RSA - theory and implementation about:reader?url=https://eli.thegreenplace.net/2...

7 of 13 11/30/19, 5:07 PM



And decryption is:

func decrypt(priv *PrivateKey, c *big.Int)

*big.Int {

m := new(big.Int)

m.Exp(c, priv.D, priv.N)

return m

}

You'll notice that the bodies of these two functions are pretty

much the same, except for which exponent they use. Indeed,

they are just typed wrappers around the Exp method.

Finally, here's the full PKCS #1 v1.5 encryption procedure, as

described above:

// EncryptRSA encrypts the message m using 

public key pub and returns the

// encrypted bytes. The length of m must be <= 

size_in_bytes(pub.N) - 11,

// otherwise an error is returned. The 

encryption block format is based on

// PKCS #1 v1.5 (RFC 2313).

func EncryptRSA(pub *PublicKey, m []byte)

([]byte, error) {

// Compute length of key in bytes, rounding 

up.

keyLen := (pub.N.BitLen() + 7) / 8

if len(m) > keyLen-11 {

return nil, fmt.Errorf("len(m)=%v, too 

RSA - theory and implementation about:reader?url=https://eli.thegreenplace.net/2...

8 of 13 11/30/19, 5:07 PM



long", len(m))

}

// Following RFC 2313, using block type 02 

as recommended for encryption:

// EB = 00 || 02 || PS || 00 || D

psLen := keyLen - len(m) - 3

eb := make([]byte, keyLen)

eb[0] = 0x00

eb[1] = 0x02

// Fill PS with random non-zero bytes.

for i := 2; i < 2+psLen; {

_, err := rand.Read(eb[i : i+1])

if err != nil {

return nil, err

}

if eb[i] != 0x00 {

i++

}

}

eb[2+psLen] = 0x00

// Copy the message m into the rest of the 

encryption block.

copy(eb[3+psLen:], m)

RSA - theory and implementation about:reader?url=https://eli.thegreenplace.net/2...

9 of 13 11/30/19, 5:07 PM



// Now the encryption block is complete; we 

take it as a m-byte big.Int and

// RSA-encrypt it with the public key.

mnum := new(big.Int).SetBytes(eb)

c := encrypt(pub, mnum)

// The result is a big.Int, which we want to 

convert to a byte slice of

// length keyLen. It's highly likely that 

the size of c in bytes is keyLen,

// but in rare cases we may need to pad it 

on the left with zeros (this only

// happens if the whole MSB of c is zeros, 

meaning that it's more than 256

// times smaller than the modulus).

padLen := keyLen - len(c.Bytes())

for i := 0; i < padLen; i++ {

eb[i] = 0x00

}

copy(eb[padLen:], c.Bytes())

return eb, nil

}

There's also DecryptRSA, which unwraps this:

// DecryptRSA decrypts the message c using 

private key priv and returns the

// decrypted bytes, based on block 02 from 

RSA - theory and implementation about:reader?url=https://eli.thegreenplace.net/2...

10 of 13 11/30/19, 5:07 PM



PKCS #1 v1.5 (RCS 2313).

// It expects the length in bytes of the 

private key modulo to be len(eb).

// Important: this is a simple implementation 

not designed to be resilient to

// timing attacks.

func DecryptRSA(priv *PrivateKey, c []byte)

([]byte, error) {

keyLen := (priv.N.BitLen() + 7) / 8

if len(c) != keyLen {

return nil, fmt.Errorf("len(c)=%v, want 

keyLen=%v", len(c), keyLen)

}

// Convert c into a bit.Int and decrypt it 

using the private key.

cnum := new(big.Int).SetBytes(c)

mnum := decrypt(priv, cnum)

// Write the bytes of mnum into m, left-

padding if needed.

m := make([]byte, keyLen)

copy(m[keyLen-len(mnum.Bytes()):],

mnum.Bytes())

// Expect proper block 02 beginning.

if m[0] != 0x00 {

RSA - theory and implementation about:reader?url=https://eli.thegreenplace.net/2...

11 of 13 11/30/19, 5:07 PM



return nil, fmt.Errorf("m[0]=%v, want 

0x00", m[0])

}

if m[1] != 0x02 {

return nil, fmt.Errorf("m[1]=%v, want 

0x02", m[1])

}

// Skip over random padding until a 0x00 

byte is reached. +2 adjusts the index

// back to the full slice.

endPad := bytes.IndexByte(m[2:], 0x00) + 2

if endPad < 2 {

return nil, fmt.Errorf("end of padding not 

found")

}

return m[endPad+1:], nil

}

Digital signatures with RSA

RSA can be also used to perform digital signatures. Here's

how it works:

1. Key generation and distribution remains the same. Alice has a

public key and a private key. She publishes her public key

online.

RSA - theory and implementation about:reader?url=https://eli.thegreenplace.net/2...

12 of 13 11/30/19, 5:07 PM



2. When Alice wants to send Bob a message and have Bob be

sure that only she could have sent it, she will encrypt the

message with her private key, that is . The signature is

attached to the message.

3. When Bob receives a message, he can decrypt the signature

with Alice's public key: and if he gets the original message

back, the signature was correct.

The correctness proof would be exactly the same as for

encryption. No one else could have signed the message,

because proper signing would require having the private key

of Alice, which only she possesses.

This is the textbook signature algorithm. One difference

between the practical implementation of signing and

encryption is in the padding protocol used. While OAEP is

recommended for encryption, PSS is recommended for

signing [5]. I'm not going to implement signing for this post, but

the Go standard library has great code for this - for example

rsa.SignPKCS1v15 and rsa.SignPSS.

RSA - theory and implementation about:reader?url=https://eli.thegreenplace.net/2...

13 of 13 11/30/19, 5:07 PM


