
 (https://www.patreon.com/bePatron?u=10705728)

(/)

HOW-TOs (/tag/how-tos) Distributions (/tag/distributions) kernel (/tag/kernel) BusyBox (/tag/busybox)

DIY� Build a Custom Minimal Linux Distribution
from Source

by Petros Koutoupis (/users/petros-koutoupis) on July 3, 2018

Follow along with this step-by-step guide to build your own

distribution from source and learn how it installs, loads and runs.

When working with Linux, you easily can download any of the

most common distributions to install and configure—be it Ubuntu,

Debian, Fedora, OpenSUSE or something entirely different. And

although you should give several distributions a spin, building your

own custom, minimal Linux distribution is also a beneficial and

wonderful learning exercise.

When I say "build a custom and minimal Linux distribution", I mean

from source packages—that is, start with a cross-compiling

toolchain and then build a target image to install on a physical or

virtual hard disk drive (HDD).

So, when I think of the ultimate Do-It-Yourself (DIY) guide related

to Linux, it's got to be exactly this: building a Linux distribution from

source. The entire process will take at least a couple hours on a

(/content/python-

and-its-community-

enter-new-phase)

CorporatePatron

(https://www.linode.com)

Most
Popular

Python

and Its

Community

Enter a

New

Phase

(/content

/python-

and-its-

community-

enter-new-

phase)

Reuven M.

Lerner

(/user

/1000891)

DIY: Build a Custom Minimal Linux Distribution f... https://www.linuxjournal.com/content/diy-build-cu...

1 of 23 7/14/18, 4:29 PM

decently powered host machine.

If you follow along with this exercise, you'll learn what it takes to

build a custom distribution, and you'll also learn how that

distribution installs, loads and runs. You can run this exercise on

either a physical or virtual machine.

I'd be lying if I said that this process wasn't partly inspired by the

wonderful Linux From Scratch (LSF) project. The LSF project

proved to be an essential tool in my understanding of how a

standard Linux operating system is built and functions. Using a

similar philosophy, I hope to instill some of the same wisdom to

you, the reader, if you'd like to follow along.

Terms
Host: the host signifies the very machine on which you'll be

doing the vast majority of the work, including cross compilation

and installation of the target image.

Target: the target is the final cross-compiled operating system

that you'll be building from source packages. It'll be built using

the cross compiler on the host machine.

Cross compiler: you'll be building and using a cross compiler

to create the target image on the host machine. A cross

compiler is built to run on a host machine, but it's used to

compile for a target architecture or microprocessor that isn't

compatible with the host machine.

Prerequisites and Tools
To continue with this tutorial, you'll need to have GCC, make,

ncurses, Perl and grub tools (specifically grub-install) installed on

the host machine.

In order to build anything, you'll also need to download and build

all the packages for the cross compiler and the target image. I'm

using the following open-source packages and versions for this

tutorial:

binutils-2.30.tar.xz

busybox-1.28.3.tar.bz2

clfs-embedded-bootscripts-1.0-pre5.tar.bz2

gcc-7.3.0.tar.xz

glibc-2.27.tar.xz

gmp-6.1.2.tar.bz2

linux-4.16.3.tar.xz

mpc-1.1.0.tar.gz

mpfr-4.0.1.tar.xz

zlib-1.2.11.tar.gz

Configuring the Environment
Before beginning this process, you need to configure the build

environment. First, turn on Bash hash functions:

(/content

/empowering-linux-

developers-new-

wave-innovation)

(/content/diy-build-

custom-minimal-

linux-distribution-

source)

(/content/return-

values-bash-

functions)

Empowering

Linux

Developers

for the

New Wave

of

Innovation

(/content

/empowering-

linux-

developers-

new-

wave-

innovation)

Evan

Dandrea

(/users

/evan-

dandrea)

DIY: Build

a Custom

Minimal

Linux

Distribution

from

Source

(/content

/diy-build-

custom-

minimal-

linux-

distribution-

source)

Petros

Koutoupis

(/users

/petros-

koutoupis)

Returning

DIY: Build a Custom Minimal Linux Distribution f... https://www.linuxjournal.com/content/diy-build-cu...

2 of 23 7/14/18, 4:29 PM

$ set +h

Make sure that newly created files/directories are writable only by

the owner (for example, the currently logged in user account):

$ umask 022

You'll use your home directory as the main build directory. (this

isn't a requirement). This is where the cross-compilation toolchain

and target image will be installed and put into the lj-os

subdirectory. If you prefer to install it elsewhere, make the

adjustment to the code section below:

$ export LJOS=~/lj-os

$ mkdir -pv ${LJOS}

Finally, export some remaining variables:

$ export LC_ALL=POSIX

$ export PATH=${LJOS}/cross-tools/bin:/bin:/usr/

bin

After setting the above environment variables, create the target

image's filesystem hierarchy:

SUBSCRIBE

(/content/minimum-

gcc-version-likely-

jump-32-48)

(/content/userland-

turnkey-linux-your-

pocket)

Values

from Bash

Functions

(/content

/return-

values-

bash-

functions)

Mitch

Frazier

(/users

/mitch-

frazier)

Get Our
Newsletter
Email

I give my consent to be

emailed

You MayLike

Minimum

GCC

Version

Likely to

Jump from

3.2 to 4.8

(/content

/minimum-

gcc-

version-

likely-

jump-32-48

Zack

Brown

(/users

/zack-

brown)

UserLAnd,

DIY: Build a Custom Minimal Linux Distribution f... https://www.linuxjournal.com/content/diy-build-cu...

3 of 23 7/14/18, 4:29 PM

$ mkdir -pv ${LJOS}/{bin,boot{,grub},dev,{etc/,}

opt,home,

↪lib/{firmware,modules},lib64,mnt}
$ mkdir -pv ${LJOS}/{proc,media/{floppy,cdrom},s

bin,srv,sys}

$ mkdir -pv ${LJOS}/var/{lock,log,mail,run,spool

}

$ mkdir -pv ${LJOS}/var/{opt,cache,lib/{misc,loc

ate},local}

$ install -dv -m 0750 ${LJOS}/root

$ install -dv -m 1777 ${LJOS}{/var,}/tmp

$ install -dv ${LJOS}/etc/init.d

$ mkdir -pv ${LJOS}/usr/{,local/}{bin,include,li

b{,64},sbin,src}

$ mkdir -pv ${LJOS}/usr/{,local/}share/{doc,info

,locale,man}

$ mkdir -pv ${LJOS}/usr/{,local/}share/{misc,ter

minfo,zoneinfo}

$ mkdir -pv ${LJOS}/usr/{,local/}share/man/man{1

,2,3,4,5,6,7,8}

$ for dir in ${LJOS}/usr{,/local}; do

 ln -sv share/{man,doc,info} ${dir}

 done

This directory tree is based on the Filesystem Hierarchy Standard

(FHS), which is defined and hosted by the Linux Foundation

(http://refspecs.linuxfoundation.org/fhs.shtml):

Create the directory for a cross-compilation toolchain:

$ install -dv ${LJOS}/cross-tools{,/bin}

Use a symlink to /proc/mounts to maintain a list of mounted

filesystems properly in the /etc/mtab file:

$ ln -svf ../proc/mounts ${LJOS}/etc/mtab

Then create the /etc/passwd file, listing the root user account

(note: for now, you won't be setting the account password; you'll

do that after booting up into the target image for the first time):

$ cat > ${LJOS}/etc/passwd << "EOF"

root::0:0:root:/root:/bin/ash

EOF

Create the /etc/group file with the following command:

(/content/removing-

support-dead-

hardware)

(/content/clearing-

out-boot)

a Turnkey

Linux in

Your

Pocket

(/content

/userland-

turnkey-

linux-your-

pocket)

Petros

Koutoupis

(/users

/petros-

koutoupis)

Removing

Support

for Dead

Hardware

(/content

/removing-

support-

dead-

hardware)

Zack

Brown

(/users

/zack-

brown)

Clearing

Out /boot

(/content

/clearing-

out-boot)

Adam

McPartlan

(/users

/adam-

mcpartlan)

Community
Events

DIY: Build a Custom Minimal Linux Distribution f... https://www.linuxjournal.com/content/diy-build-cu...

4 of 23 7/14/18, 4:29 PM

$ cat > ${LJOS}/etc/group << "EOF"

root:x:0:

bin:x:1:

sys:x:2:

kmem:x:3:

tty:x:4:

daemon:x:6:

disk:x:8:

dialout:x:10:

video:x:12:

utmp:x:13:

usb:x:14:

EOF

The target system's /etc/fstab:

$ cat > ${LJOS}/etc/fstab << "EOF"

file system mount-point type options

dump fsck

order

rootfs / auto defaults

1 1

proc /proc proc defaults

0 0

sysfs /sys sysfs defaults

0 0

devpts /dev/pts devpts gid=4,mo

de=620 0 0

tmpfs /dev/shm tmpfs defaults

0 0

EOF

The target system's /etc/profile to be used by the Almquist shell

(ash) once the user is logged in to the target machine:

OSCON 2018

(https://conferences.oreilly.com

/oscon/oscon-or)
July 16, 2018 - July 19,

2018

Portland, OR, USA

DEFCON 2018

(https://www.defcon.org/

)
August 9, 2018 - August

12, 2018

Las Vegas, NV, USA

Linux Security

Summit North

America

(https://events.linuxfoundation.org

/events/linux-

security-summit-

north-america-2…)
August 27, 2018 -

August 28, 2018

Vancouver, Canada

Open Source

Summit North

America

(https://events.linuxfoundation.org

/events/open-

source-summit-

north-

america-2018/)
August 29, 2018 -

August 31, 2018

Vancouver, Canada

Interdrone

(https://www.interdrone.com/

)
September 5, 2018 -

September 7, 2018

Las Vegas, NV, USA

DIY: Build a Custom Minimal Linux Distribution f... https://www.linuxjournal.com/content/diy-build-cu...

5 of 23 7/14/18, 4:29 PM

$ cat > ${LJOS}/etc/profile << "EOF"

export PATH=/bin:/usr/bin

if [`id -u` -eq 0] ; then

 PATH=/bin:/sbin:/usr/bin:/usr/sbin

 unset HISTFILE

fi

Set up some environment variables.

export USER=`id -un`

export LOGNAME=$USER

export HOSTNAME=`/bin/hostname`

export HISTSIZE=1000

export HISTFILESIZE=1000

export PAGER='/bin/more '

export EDITOR='/bin/vi'

EOF

The target machine's hostname (you can change this any time):

$ echo "ljos-test" > ${LJOS}/etc/HOSTNAME

And, /etc/issue, which will be displayed prominently at the login

prompt:

$ cat > ${LJOS}/etc/issue<< "EOF"

Linux Journal OS 0.1a

Kernel \r on an \m

EOF

You won't use systemd here (this wasn't a political decision; it's

due to convenience and for simplicity's sake). Instead, you'll use

the basic init process provided by BusyBox. This requires that

you define an /etc/inittab file:

DIY: Build a Custom Minimal Linux Distribution f... https://www.linuxjournal.com/content/diy-build-cu...

6 of 23 7/14/18, 4:29 PM

$ cat > ${LJOS}/etc/inittab<< "EOF"

::sysinit:/etc/rc.d/startup

tty1::respawn:/sbin/getty 38400 tty1

tty2::respawn:/sbin/getty 38400 tty2

tty3::respawn:/sbin/getty 38400 tty3

tty4::respawn:/sbin/getty 38400 tty4

tty5::respawn:/sbin/getty 38400 tty5

tty6::respawn:/sbin/getty 38400 tty6

::shutdown:/etc/rc.d/shutdown

::ctrlaltdel:/sbin/reboot

EOF

Also as a result of leveraging BusyBox to simplify some of the

most common Linux system functionality, you'll use mdev instead

of udev , which requires you to define the following /etc/mdev.conf

file:

DIY: Build a Custom Minimal Linux Distribution f... https://www.linuxjournal.com/content/diy-build-cu...

7 of 23 7/14/18, 4:29 PM

$ cat > ${LJOS}/etc/mdev.conf<< "EOF"

Devices:

Syntax: %s %d:%d %s

devices user:group mode

null does already exist; therefore ownership h

as to

be changed with command

null root:root 0666 @chmod 666 $MDEV

zero root:root 0666

grsec root:root 0660

full root:root 0666

random root:root 0666

urandom root:root 0444

hwrandom root:root 0660

console does already exist; therefore ownershi

p has to

be changed with command

console root:tty 0600 @mkdir -pm 755 fd && cd fd

&& for x

↪in 0 1 2 3 ; do ln -sf /proc/self/fd/$x $x; do
ne

kmem root:root 0640

mem root:root 0640

port root:root 0640

ptmx root:tty 0666

ram.*

ram([0-9]*) root:disk 0660 >rd/%1

loop([0-9]+) root:disk 0660 >loop/%1

sd[a-z].* root:disk 0660 */lib/mdev/usbdis

k_link

hd[a-z][0-9]* root:disk 0660 */lib/mdev/ide_li

nks

tty root:tty 0666

tty[0-9] root:root 0600

tty[0-9][0-9] root:tty 0660

ttyO[0-9]* root:tty 0660

pty.* root:tty 0660

vcs[0-9]* root:tty 0660

vcsa[0-9]* root:tty 0660

ttyLTM[0-9] root:dialout 0660 @ln -sf $MDEV

modem

ttySHSF[0-9] root:dialout 0660 @ln -sf $MDEV

modem

slamr root:dialout 0660 @ln -sf $MDEV

slamr0

slusb root:dialout 0660 @ln -sf $MDEV

DIY: Build a Custom Minimal Linux Distribution f... https://www.linuxjournal.com/content/diy-build-cu...

8 of 23 7/14/18, 4:29 PM

slusb0

fuse root:root 0666

misc stuff

agpgart root:root 0660 >misc/

psaux root:root 0660 >misc/

rtc root:root 0664 >misc/

input stuff

event[0-9]+ root:root 0640 =input/

ts[0-9] root:root 0600 =input/

v4l stuff

vbi[0-9] root:video 0660 >v4l/

video[0-9] root:video 0660 >v4l/

load drivers for usb devices

usbdev[0-9].[0-9] root:root 0660 */lib/mde

v/usbdev

usbdev[0-9].[0-9]_.* root:root 0660

EOF

You'll need to create a /boot/grub/grub.cfg for the GRUB

bootloader that will be installed on the target machine's physical or

virtual HDD (note: the kernel image defined in this file needs to

reflect the image built and installed on the target machine):

$ cat > ${LJOS}/boot/grub/grub.cfg<< "EOF"

set default=0

set timeout=5

set root=(hd0,1)

menuentry "Linux Journal OS 0.1a" {

 linux /boot/vmlinuz-4.16.3 root=/dev/s

da1 ro quiet

}

EOF

Finally, initialize the log files and give them proper permissions:

$ touch ${LJOS}/var/run/utmp ${LJOS}/var/log/{bt

mp,lastlog,wtmp}

$ chmod -v 664 ${LJOS}/var/run/utmp ${LJOS}/var/

log/lastlog

Building the Cross Compiler

DIY: Build a Custom Minimal Linux Distribution f... https://www.linuxjournal.com/content/diy-build-cu...

9 of 23 7/14/18, 4:29 PM

If you recall, the cross compiler is a toolchain of various

compilation tools built for the system on which it's executing but

designed to compile for an architecture or microprocessor that's

not necessarily compatible with the system on which you're using

it. In my environment, I'm running a 64-bit x86 architecture

(x86-64) and will be cross compiling to a generic x86-64 target

architecture. Sure, this section is somewhat redundant considering

the environment I am running in, but the tutorial is designed to

ensure that you are able to build for an x86-64 target, regardless

of the machine type that you are using (for example, PowerPC,

ARM, x86 and so on).

You never can be too sure with what is set in a currently running

environment, which is why you'll unset the following C and C++

flags:

$ unset CFLAGS

$ unset CXXFLAGS

Next, define the most vital parts of the host/target variables

needed to create the cross-compiler toolchain and target image:

$ export LJOS_HOST=$(echo ${MACHTYPE} | sed "s/-

[^-]*/-cross/")

$ export LJOS_TARGET=x86_64-unknown-linux-gnu

$ export LJOS_CPU=k8

$ export LJOS_ARCH=$(echo ${LJOS_TARGET} | sed -

e

↪'s/-.*//' -e 's/i.86/i386/')
$ export LJOS_ENDIAN=little

Kernel Headers
The kernel's standard header files need to be installed for the

cross compiler. Uncompress the kernel tarball and change into its

directory. Then run:

$ make mrproper

$ make ARCH=${LJOS_ARCH} headers_check && \

make ARCH=${LJOS_ARCH} INSTALL_HDR_PATH=dest hea

ders_install

$ cp -rv dest/include/* ${LJOS}/usr/include

Binutils
Binutils contains a linker, assembler and other tools needed to

handle compiled object files. Uncompress the tarball. Then create

DIY: Build a Custom Minimal Linux Distribution f... https://www.linuxjournal.com/content/diy-build-cu...

10 of 23 7/14/18, 4:29 PM

the binutils-build directory and change into it:

$ mkdir binutils-build

$ cd binutils-build/

Then run:

$../binutils-2.30/configure --prefix=${LJOS}/cr

oss-tools \

--target=${LJOS_TARGET} --with-sysroot=${LJOS} \

--disable-nls --enable-shared --disable-multilib

$ make configure-host && make

$ ln -sv lib ${LJOS}/cross-tools/lib64

$ make install

Copy over the following header file to the target's filesystem:

$ cp -v ../binutils-2.30/include/libiberty.h ${L

JOS}/usr/include

GCC (Static)

Before building the final cross-compiler toolchain, you first must

build a statically compiled toolchain to build the C library (glibc) to

which the final GCC cross compiler will link.

Uncompress the GCC tarball, and then uncompress the following

packages and move them into the GCC root directory:

$ tar xjf gmp-6.1.2.tar.bz2

$ mv gmp-6.1.2 gcc-7.3.0/gmp

$ tar xJf mpfr-4.0.1.tar.xz

$ mv mpfr-4.0.1 gcc-7.3.0/mpfr

$ tar xzf mpc-1.1.0.tar.gz

$ mv mpc-1.1.0 gcc-7.3.0/mpc

Now create a gcc-static directory and change into it:

$ mkdir gcc-static

$ cd gcc-static/

Run the following commands:

DIY: Build a Custom Minimal Linux Distribution f... https://www.linuxjournal.com/content/diy-build-cu...

11 of 23 7/14/18, 4:29 PM

$ AR=ar LDFLAGS="-Wl,-rpath,${LJOS}/cross-tools/

lib" \

../gcc-7.3.0/configure --prefix=${LJOS}/cross-to

ols \

--build=${LJOS_HOST} --host=${LJOS_HOST} \

--target=${LJOS_TARGET} \

--with-sysroot=${LJOS}/target --disable-nls \

--disable-shared \

--with-mpfr-include=$(pwd)/../gcc-7.3.0/mpfr/src

\

--with-mpfr-lib=$(pwd)/mpfr/src/.libs \

--without-headers --with-newlib --disable-decima

l-float \

--disable-libgomp --disable-libmudflap --disable

-libssp \

--disable-threads --enable-languages=c,c++ \

--disable-multilib --with-arch=${LJOS_CPU}

$ make all-gcc all-target-libgcc && \

make install-gcc install-target-libgcc

$ ln -vs libgcc.a `${LJOS_TARGET}-gcc -print-lib

gcc-file-name |

↪sed 's/libgcc/&_eh/'`

Do not delete these directories; you'll need to come back to them

from the final version of GCC.

Glibc

Uncompress the glibc tarball. Then create the glibc-build directory

and change into it:

$ mkdir glibc-build

$ cd glibc-build/

Configure the following build flags:

$ echo "libc_cv_forced_unwind=yes" > config.cach

e

$ echo "libc_cv_c_cleanup=yes" >> config.cache

$ echo "libc_cv_ssp=no" >> config.cache

$ echo "libc_cv_ssp_strong=no" >> config.cache

Then run:

DIY: Build a Custom Minimal Linux Distribution f... https://www.linuxjournal.com/content/diy-build-cu...

12 of 23 7/14/18, 4:29 PM

$ BUILD_CC="gcc" CC="${LJOS_TARGET}-gcc" \

AR="${LJOS_TARGET}-ar" \

RANLIB="${LJOS_TARGET}-ranlib" CFLAGS="-O2" \

../glibc-2.27/configure --prefix=/usr \

--host=${LJOS_TARGET} --build=${LJOS_HOST} \

--disable-profile --enable-add-ons --with-tls \

--enable-kernel=2.6.32 --with-__thread \

--with-binutils=${LJOS}/cross-tools/bin \

--with-headers=${LJOS}/usr/include \

--cache-file=config.cache

$ make && make install_root=${LJOS}/ install

GCC (Final)

As I mentioned previously, you'll now build the final GCC cross

compiler that will link to the C library built and installed in the

previous step. Create the gcc-build directory and change into it:

$ mkdir gcc-build

$ cd gcc-build/

Then run:

$ AR=ar LDFLAGS="-Wl,-rpath,${LJOS}/cross-tools/

lib" \

../gcc-7.3.0/configure --prefix=${LJOS}/cross-to

ols \

--build=${LJOS_HOST} --target=${LJOS_TARGET} \

--host=${LJOS_HOST} --with-sysroot=${LJOS} \

--disable-nls --enable-shared \

--enable-languages=c,c++ --enable-c99 \

--enable-long-long \

--with-mpfr-include=$(pwd)/../gcc-7.3.0/mpfr/src

\

--with-mpfr-lib=$(pwd)/mpfr/src/.libs \

--disable-multilib --with-arch=${LJOS_CPU}

$ make && make install

$ cp -v ${LJOS}/cross-tools/${LJOS_TARGET}/lib64

/

↪libgcc_s.so.1 ${LJOS}/lib64

Now that you've built the cross compiler, you need to adjust and

export the following variables:

DIY: Build a Custom Minimal Linux Distribution f... https://www.linuxjournal.com/content/diy-build-cu...

13 of 23 7/14/18, 4:29 PM

$ export CC="${LJOS_TARGET}-gcc"

$ export CXX="${LJOS_TARGET}-g++"

$ export CPP="${LJOS_TARGET}-gcc -E"

$ export AR="${LJOS_TARGET}-ar"

$ export AS="${LJOS_TARGET}-as"

$ export LD="${LJOS_TARGET}-ld"

$ export RANLIB="${LJOS_TARGET}-ranlib"

$ export READELF="${LJOS_TARGET}-readelf"

$ export STRIP="${LJOS_TARGET}-strip"

Building the Target Image
The hard part is now complete—you have the cross compiler.

Now, let's focus on building the components that will be installed

on the target image. This includes various libraries and utilities

and, of course, the Linux kernel itself.

BusyBox

BusyBox is one of my all-time favorite open-source projects. The

project advertises itself to be the Swiss Army knife of open-source

utilities, and that's probably the best description one could give the

project. BusyBox combines a large collection of tiny versions of the

most commonly used Linux utilities into a single distributed

package. Those tools range from common binaries, text editors

and command-line shells to filesystem and networking utilities,

process management tools and many more.

Uncompress the tarball and change into its directory. Then load

the default compilation configuration template:

$ make CROSS_COMPILE="${LJOS_TARGET}-" defconfig

The default configuration template will enable the compilation of a

default defined set of utilities and libraries. You can enable/disable

whatever you see fit by running menuconfig :

$ make CROSS_COMPILE="${LJOS_TARGET}-" menuconfi

g

Compile and install the package:

$ make CROSS_COMPILE="${LJOS_TARGET}-"

$ make CROSS_COMPILE="${LJOS_TARGET}-" \

CONFIG_PREFIX="${LJOS}" install

DIY: Build a Custom Minimal Linux Distribution f... https://www.linuxjournal.com/content/diy-build-cu...

14 of 23 7/14/18, 4:29 PM

Install the following Perl script, as you'll need it for the kernel build

below:

$ cp -v examples/depmod.pl ${LJOS}/cross-tools/b

in

$ chmod 755 ${LJOS}/cross-tools/bin/depmod.pl

The Linux Kernel

Change into the kernel package directory and run the following to

set the default x86-64 configuration template:

$ make ARCH=${LJOS_ARCH} \

CROSS_COMPILE=${LJOS_TARGET}- x86_64_defconfig

This will define a minimum set of modules and settings for the

compilation process. You most likely will need to make the proper

adjustments for the target machine's environment. This includes

enabling modules for storage and networking controllers and

more. You can do that with the menuconfig option:

$ make ARCH=${LJOS_ARCH} \

CROSS_COMPILE=${LJOS_TARGET}- menuconfig

For instance, I'm going to be running this target image in a

VirtualBox virtual machine where it will rely on an Intel e1000

networking module (defaulted in defconfig) and an LSI mpt2sas

storage controller for the operating system drive. For the sake of

simplicity, these modules are configured to be compiled statically

into the kernel image—that is, set to * instead of m . Be sure to

review what's needed and enable it, or your target environment will

not operate properly when booted.

Compile and install the kernel:

$ make ARCH=${LJOS_ARCH} \

CROSS_COMPILE=${LJOS_TARGET}-

$ make ARCH=${LJOS_ARCH} \

CROSS_COMPILE=${LJOS_TARGET}- \

INSTALL_MOD_PATH=${LJOS} modules_install

You'll need to copy a few files into the /boot directory for GRUB:

DIY: Build a Custom Minimal Linux Distribution f... https://www.linuxjournal.com/content/diy-build-cu...

15 of 23 7/14/18, 4:29 PM

$ cp -v arch/x86/boot/bzImage ${LJOS}/boot/vmlin

uz-4.16.3

$ cp -v System.map ${LJOS}/boot/System.map-4.16.

3

$ cp -v .config ${LJOS}/boot/config-4.16.3

Then run the previously installed Perl script provided by the

BusyBox package:

$ ${LJOS}/cross-tools/bin/depmod.pl \

-F ${LJOS}/boot/System.map-4.16.3 \

-b ${LJOS}/lib/modules/4.16.3

The Bootscripts

The Cross Linux From Scratch (CLFS) project (a fork of the

original LFS project) provides a wonderful set of bootscripts that I

use here for simplicity's sake. Uncompress the package and

change into its directory. Out of box, one of the package's

makefiles contains a line that may not be compatible with your

current working shell. Apply the following changes to the

package's root Makefile to ensure that you don't experience any

issues with package installation:

@@ -19,7 +19,9 @@ dist:

 rm -rf "dist/clfs-embedded-bootscripts-$

(VERSION)"

 create-dirs:

- install -d -m ${DIRMODE}

↪${EXTDIR}/rc.d/{init.d,start,stop}
+ install -d -m ${DIRMODE} ${EXTDIR}/rc.d/

init.d

+ install -d -m ${DIRMODE} ${EXTDIR}/rc.d/

start

+ install -d -m ${DIRMODE} ${EXTDIR}/rc.d/

stop

 install-bootscripts: create-dirs

 install -m ${CONFMODE} clfs/rc.d/init.d/

functions

 ↪${EXTDIR}/rc.d/init.d/

Then run the following commands to install and configure the

target environment appropriately:

DIY: Build a Custom Minimal Linux Distribution f... https://www.linuxjournal.com/content/diy-build-cu...

16 of 23 7/14/18, 4:29 PM

$ make DESTDIR=${LJOS}/ install-bootscripts

$ ln -sv ../rc.d/startup ${LJOS}/etc/init.d/rcS

Zlib

Now you're at the very last package for this tutorial. Zlib isn't a

requirement, but it serves as a great guide for other packages you

may want to install for your environment. Feel free to skip this step

if you'd rather format and configure the physical or virtual HDD.

Uncompress the Zlib tarball and change into its directory. Then

configure, build and install the package:

$ sed -i 's/-O3/-Os/g' configure

$./configure --prefix=/usr --shared

$ make && make DESTDIR=${LJOS}/ install

Now, because some packages may look for Zlib libraries in the /lib

directory instead of the /lib64 directory, apply the following

changes:

$ mv -v ${LJOS}/usr/lib/libz.so.* ${LJOS}/lib

$ ln -svf ../../lib/libz.so.1 ${LJOS}/usr/lib/li

bz.so

$ ln -svf ../../lib/libz.so.1 ${LJOS}/usr/lib/li

bz.so.1

$ ln -svf ../lib/libz.so.1 ${LJOS}/lib64/libz.so

.1

Installing the Target Image
All of the cross compilation is complete. Now you have everything

you need to install the entire cross-compiled operating system to

either a physical or virtual drive, but before doing that, let's not

tamper with the original target build directory by making a copy of

it:

$ cp -rf ljos/ ljos-copy

Use this copy for the remainder of this tutorial. Remove some of

the now unneeded directories:

DIY: Build a Custom Minimal Linux Distribution f... https://www.linuxjournal.com/content/diy-build-cu...

17 of 23 7/14/18, 4:29 PM

$ rm -rfv ${LJOS}-copy/cross-tools

$ rm -rfv ${LJOS}-copy/usr/src/*

Followed by the now unneeded statically compiled library files (if

any):

$ FILES="$(ls ${LJOS}-copy/usr/lib64/*.a)"

$ for file in $FILES; do

> rm -f $file

> done

Now strip all debug symbols from the installed binaries. This will

reduce overall file sizes and keep the target image's overall

footprint to a minimum:

$ find ${LJOS}-copy/{,usr/}{bin,lib,sbin} -type

f

↪-exec sudo strip --strip-debug '{}' ';'
$ find ${LJOS}-copy/{,usr/}lib64 -type f -exec s

udo

↪strip --strip-debug '{}' ';'

Finally, change file ownerships and create the following nodes:

$ sudo chown -R root:root ${LJOS}-copy

$ sudo chgrp 13 ${LJOS}-copy/var/run/utmp

↪${LJOS}-copy/var/log/lastlog
$ sudo mknod -m 0666 ${LJOS}-copy/dev/null c 1 3

$ sudo mknod -m 0600 ${LJOS}-copy/dev/console c

5 1

$ sudo chmod 4755 ${LJOS}-copy/bin/busybox

Change into the target copy directory to create a tarball of the

entire operating system image:

$ cd ljos-copy/

$ sudo tar cfJ ../ljos-build-21April2018.tar.xz

*

Notice how the target image is less than 60MB. You built that—a

minimal Linux operating system that occupies less than 60MB of

disk space:

DIY: Build a Custom Minimal Linux Distribution f... https://www.linuxjournal.com/content/diy-build-cu...

18 of 23 7/14/18, 4:29 PM

$ sudo du -h|tail -n1

58M .

And, that same operating system compresses to less than 20MB:

$ ls -lh ljos-build-21April2018.tar.xz

-rw-r--r-- 1 root root 18M Apr 21 15:31

↪ljos-build-21April2018.tar.xz

For the rest of this tutorial, you'll need a disk drive. It will need to

enumerate as a traditional block device (in my case, it's /dev/sdd):

$ cat /proc/partitions |grep sdd

 8 48 256000 sdd

That block device will need to be partitioned. A single partition

should suffice, and you can use any one of a number of partition

utilities, including fdisk or parted . Once that partition is created

and detected by the host system, format the partition with an ext4

filesystem, mount that partition to a staging area and change into

that directory:

$ sudo mkfs.ext4 /dev/sdd1

$ sudo mkdir tmp

$ sudo mount /dev/sdd1 tmp/

$ cd tmp/

Uncompress the operating system tarball of the entire target

operating system into the root of the staging directory:

$ sudo tar xJf ../ljos-build-21April2018.tar.xz

Now run grub-install to install all the necessary modules and

boot records to the volume:

$ sudo grub-install --root-directory=/home/petro

s/tmp/ /dev/sdd

The --root-directory parameter defines the absolute path of

the staging directory, while the last parameter is the block device

without the partition's label.

DIY: Build a Custom Minimal Linux Distribution f... https://www.linuxjournal.com/content/diy-build-cu...

19 of 23 7/14/18, 4:29 PM

Booting Up for the First Time
Now you're officially done. Install the HDD to the physical or virtual

machine (as the primary disk drive) and power it up. You

immediately will be greeted by the GRUB bootloader (Figure 1).

Figure 1. The GRUB Bootloader

And within one second (yes, you read that correctly, one second),

you'll be at the operating system's login prompt (Figure 2).

Figure 2. The User Login Prompt

You'll notice a couple boot "error" and warning messages. This is

because you're missing a couple files. You can correct that as you

continue to learn the environment and build more packages into

the operating system.

DIY: Build a Custom Minimal Linux Distribution f... https://www.linuxjournal.com/content/diy-build-cu...

20 of 23 7/14/18, 4:29 PM

If you recall, you never set a root password. This was intentional.

Log in as root, and you'll immediately fall into a shell without

needing to input a password. You can change this behavior by

using BusyBox's passwd command, which should have been built

in to this image.

Figure 3. Executing a Few Simple Tasks

Enjoy!

Next Steps
So, where does this leave you now? You were able to build a

custom Linux distribution for the generic x86-64 architecture from

open-source packages and load into it successfully. Employing the

same cross-compilation toolchain, you can use a similar process

to build more utilities and libraries into the operating system, such

as networking utilities, storage volume management frameworks

and more.

For future builds, be sure to keep the cross-compilation build

directory and your headers, and be sure to continue exporting the

following variables (which you probably can throw into a script file):

DIY: Build a Custom Minimal Linux Distribution f... https://www.linuxjournal.com/content/diy-build-cu...

21 of 23 7/14/18, 4:29 PM

(/subscribe)

set +h

umask 022

export LJOS=~/lj-os

export LC_ALL=POSIX

export PATH=${LJOS}/cross-tools/bin:/bin:/usr/bi

n

unset CFLAGS

unset CXXFLAGS

export LJOS_HOST=$(echo ${MACHTYPE} | sed "s/-[^

-]*/-cross/")

export LJOS_TARGET=x86_64-unknown-linux-gnu

export LJOS_CPU=k8

export LJOS_ARCH=$(echo ${LJOS_TARGET} | sed -e

's/-.*//'

↪-e 's/i.86/i386/')
export LJOS_ENDIAN=little

export CC="${LJOS_TARGET}-gcc"

export CXX="${LJOS_TARGET}-g++"

export CPP="${LJOS_TARGET}-gcc -E"

export AR="${LJOS_TARGET}-ar"

export AS="${LJOS_TARGET}-as"

export LD="${LJOS_TARGET}-ld"

export RANLIB="${LJOS_TARGET}-ranlib"

export READELF="${LJOS_TARGET}-readelf"

export STRIP="${LJOS_TARGET}-strip"

Petros Koutoupis, LJ Editor at Large, is currently a senior platform

architect at IBM for its Cloud Object Storage division (formerly Cleversafe).

He is also the creator and maintainer of the RapidDisk Project. Petros has

worked in the data storage industry for well over a decade and has helped

pioneer the many technologies unleashed in the wild today.

Load 11 comments (https://www.linuxjournal.com/content/diy-build-custom-minimal-linux-distribution-source#disqus_thread

Connect With Us

/linuxjournal/)

Linux Journal, currently celebrating its 24th year of publication, is the original magazine of the global Open Source

community.

© 2018 Linux Journal, LLC. All rights reserved. (http://www.privateinternetaccess.com

 (https://youtube.com/linuxjournalonline) (https://www.facebook.com

 (https://twitter.com/linuxjournal)

DIY: Build a Custom Minimal Linux Distribution f... https://www.linuxjournal.com/content/diy-build-cu...

22 of 23 7/14/18, 4:29 PM

/pages/buy-

vpn/linuxjournal)

PRIVACY POLICY (/CONTENT/PRIVACY-STATEMENT) TERMS OF SERVICE (/TERMS-SERVICE)

ADVERTISE (/SPONSORS)

SUBSCRIBE

(/SUBSCRIBE)

RENEW (/RENEW)

BACKISSUES

(/DIGITAL)

CUSTOMER

SERVICE (/SUBS

/CUSTOMER_SERVICE)

MASTHEAD

(/CONTENT

/MASTHEAD)

FAQ (/CONTENT

/LINUX-JOURNAL-

20-FAQ)

AUTHORS

(/AUTHOR)

LETTERS TO

EDITOR

(/CONTACT)

RSS FEEDS

(/RSS_FEEDS)

NEWSLETTERS

(/ENEWSLETTERS)

MERCHANDISE

(HTTP://WWW.LINUXJOURNALSTORE.COM/)

CONTACT US

(/ABOUTUS)

DIY: Build a Custom Minimal Linux Distribution f... https://www.linuxjournal.com/content/diy-build-cu...

23 of 23 7/14/18, 4:29 PM

